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PREFACE.

There has existed for some time past a general feeling

that the Laws of Motion form the only satisfactory basis

on which the science of Statics can be built. So far as I

know, all the text-books in use in Cambridge except Prof.

Minchin's, treat the subject from quite a different point of

view. In this text-book I have endeavoured to supply

the wants of students, who are not sufficiently advanced

in Pure Mathematics, to read with advantage Professor

Minchin's treatise on Analytical Statics.

Deducing from the Newtonian definition of force and

the parallelogram of velocities, the parallelogram of forces,

I obtain the necessary conditions of equilibrium for any
material system by means of the third law, without assum-

ing the transmissihility of force, or supposing the system

to become rioid. From these and certain oeometrical

considerations follow the sufficient conditions of equili-

brium of a rigid body. This involves the introduction of

the conception of the moment of a force about a line, and

certain geometrical propositions, which may be regarded
as somewhat difficult for a beginner : I am in hopes that

these difficulties will not be found insuperable, as it seems

to me that there is a distinct gain in clearness and

simplicity by this mode of treatment of the subject. The

Appendix on indefinitely small quantities has been added

994525



VI PREFACE.

to enable the student, who is unacquainted with Newton's

Lemvias and the Differ^ential Calculus, to follow the

methods used in the chapters on the Centre of Mass and

Virtual Work.

For the sake of students beginning the subject, easy

numerical examples on the preceding propositions have

been embodied in the text. The articles, marked with an

asterisk, may be reserved for a second reading of the sub-

ject. Explanations and illustrations are printed in smaller

type than the articles relating to general principles. With

the view of making the diagrams more intelligible, the

]bounding lines of physical surfaces are drawn thicker than

lines representing forces, and lines diawn merely to obtain

a geometrical solution of the problem are dotted.

I have referred continually to Thomson and Tait's

Natural Philosophy, and have also consulted Jellett's

Theory of Friction. Several of the Illustrative Examples
are taken from Dr Wolstenholme's Collection.

I am much indebted to Mr E. W. Hobson, M. A., Fellow

of Christ's College, for many valuable suggestions, and also

to Mr J. B. Holt, B.A., Scholar of Christ's College, for his

kind criticisms and assistance.

JOHN GREAVES.

Christ's College, Cambridge,

April, 1886.
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STATICS.

CHAPTER I.

STATICS OF A SINGLE PARTICLE.

1. When a point is changing its position relatively
to surrounding points, it is said to be in motion relatively
to them : if it is not changing its position, it is said to be
at rest.

If we consider not only the actual change of position,
but also the time which the motion occupied, we bring in

the idea of
'

rate of motion' or
'

velocity'.

2. Def. If a point moves so that the distances,
measured along its path, between its positions at the ends
of equal successive intervals of time, are equal to one

another, no matter how short the intervals are, the

velocity of the point is said to be 'uniform'. If the

distances are not equal, the velocity is
'

varying'.

For the velocity to be uniform, it is essential that the distances be

equal, even when the intervals of time are indefinitely small: for

instance, we may imagine a train travelling 30 miles during each of

several successive hours, yet we should not describe its motion as

uniform, if the distances travelled during the different minutes were not

all equal, nor yet, even though the distances travelled during the

different minutes were so, provided those travelled during the different

seconds were not always the same, and so on indefinitely.

G. 1



2 STATICS.

dr : i5^f wa wisL to give ^.ny one a clear idea of the

mag1aitii"dG 1")^ senile' pbysi'';?! quantity, we describe it as

bearing such and such a ratio to some definite arbitrarily
chosen amount of that quantity, known to him. The
known definite amount is called the

'

imit' of the physical

quantity generally, while the ratio is called the 'numerical

measure', or simply the measure of the particular amount
under consideration.

If for instance, the area of a certain field be 12| acres, and an acre

be chosen as the unit area, the ratio of the area of the field to that of

the unit is 12|, which is therefore the numerical measure of the area of

the field.

We shall suppose then, that we have fixed on some

particular length as the unit length, and some particular
interval of time as the unit of time.

If the velocity of a point be uniform, its numerical

measure is the numerical measure of the distance

traversed by it during the unit of time. It may happen
that the point's velocity, though uniform for a finite

interval of time, is not so for the unit of time : in that

case, its numerical measure is that of the space the point
would traverse during the unit of time, provided it moved

throughout with the same velocity as during the finite

time. The velocity which we call the unit velocity, or

whose numerical measure is one, is the velocity of a point
which traverses the unit of length in the unit of time.

Def. The mean or average velocity of a point during

any interval of time is the velocity with which a point,

moving uniformly during that time, would describe the same
distance. Its numerical measure is therefore the numerical

measure of the distance described, divided by that of the

time required.

Def. The velocity of a point at any instant, is the

limit of the mean velocity of the point during an interval

of time including the particular instant, when the interval

is diminished indefinitely.



STATICS OF A SINGLE PARTICLE. 3

Ex. 1. Compare the velocities of two points which move uniformly,
one through 5 feet in half a second, and the other through 100 yards in

a minute. Aiis. 2:1.

Ex. 2. A railway train travels 160 miles in 6 hours 30 minutes.

What is its average velocity in feet per second? Ans. 36*1 nearly.

Ex. 3. One point moves uniformly twice round the circumference of

a circle, while another moves uniformly along the diameter : compare
their velocities. Ans. 27r : 1.

Ex. 4. A fly-wheel is 14 feet in diameter, and is observed to go round

uniformly fifteen times in a minute : find the velocity of a point in the

circumference. Ans. 11 feet per second nearly.

Ex. 5. Supposing the earth to rotate about its axis in 23 hours

56 minutes, its equatorial diameter being 7925 miles, find the velocity of

a point at the equator relative to the earth's centre, in feet per second.

Ans. 1526 nearly.

4. Now a velocity is entirely known, if its direction

and magnitude are known. But as a straight line AB can

be drawn in any direction, it can be drawn so as to in-

dicate fully the direction of a

point's velocity, provided we shew
Fig.i

either by an arrow-head or by the a b

order of the letters AB, the sense

of the velocity, i.e. whether its

direction be from A to B or from B to A. As we can

make the line of any length, we can make it so that its

length bears the same ratio to some arbitrarily chosen

length as the velocity considered bears to the unit of

velocity. If this be done, and we know the 'scale', i.e.

the length chosen to represent the unit velocity, the line

AB represents completely the velocity considered.

5. A point may be moving with several independent velocities at

once : for instance, we know that the earth as a whole is describing an

orbit about the sun, and that all points on the earth's surface are

describing circles about the earth's axis ;
if then, a point be moving

on the earth's surface, it has relatively to the sun, three independent

velocities, viz. its velocity on the earth's surface, the velocity of the point

of the earth's surface it occupies at the particular instant, relatively

1—2



4 STATICS.

to the centre of the earth, and the velocity of the earth's centre about the

sun.

Def. When a point has several independent veloci-

ties, the single velocity which would alone give the point's
motion is called the resultant of the other velocities.

Let us consider the case of a point moving in a straight
line along the deck of a ship, with uniform velocity
relative to the ship, which is sailing with uniform velocity
in a straight line along the earth's surface. It is required
to find the point's motion relative to the earth's surface,

i.e. given its position at one instant, it is required to find

its position at the end of a given time. Now since the

point's motion on the ship's deck is entirely independent
of the ship's motion, if we suppose the point fixed to the

deck during the time considered, so that its motion is that

of the ship, then the ship to remain stationary while the

point moves for an equal time along the deck with its

velocity relative to the ship, the final position of the

point will be the same as if the two motions had taken

place simultaneously, as they really do.

The above illustration exemplifies a general axiomatic

principle, which may be stated thus : if during a certain

time a 'point has several independent motions, its actual

position at the end of any portion of that time may he

found by imagining that all the motions take place

separately during a number of successive periods of time

equal to the one considered, instead of supposing that all

the motions take place siiyiidtaneously ,
which is ivhat

really takes place. Of course the imaginary motion only

gives the same initial and final positions of the point as

the real one, aud not in general intermediate ones, although

by taking the periods of time very small, but very large
in number, the imaginary motion which gives us the real

position of the point at the end of each of them, will

give us an infinite number of points on the point's actual

path. The motions referred to above are not of necessity
due to uniform velocities.
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6. Prop. If the two independent velocities of a

point be represented in magnitude, direction and sense

by two straight lines drawn from or to a point, and a paral-

lelogram be constructed on them as adjacent sides, the

resultant velocity is represented in magnitude, direction

and sense by the diagonal drawn from or to the point of

intersection of these sides.

Let the lines OA, OB represent in magnitude, sense

and direction the velocities u, v of the point : complete
the parallelogram OAGB, and join 00; then OC shall

represent the resultant velocity. If be taken as the

Fig.2

initial position of the point, its position at the end of a

time t can be found by supposing that it first moves
with a velocity OA for a time t, and then with a velo-

city OB for the same time. If it moves with a velocity
OA or It alone, it will at the end of a time ^ be at a in the
line OA, where Oa = ut

;
if now it moves with the velocity

OB or V alone for a time t, it will arrive at c, where ac is

parallel to OB, and ac = vt c then is the position of the

point at the end of a time t, when the motions take place

simultaneously.

But because ac : Oa = AC : OA, c is in 00, i.e. 00 re-

presents the direction of the resultant velocity. Also the

magnitude of the resultant velocity is to the velocity OA
as Oc is to Oa, i.e. as 00 : OA : hence 00 represents the

magnitude of the resultant velocity. The sense of the

resultant velocity is clearly OC.
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The above proposition which is known as the 'Paral-

lelogram of Velocities' holds at any instant, even though
the independent velocities be varying velocities : for it is

only necessary to suppose that the time t is ultimately

indefinitely small, and the above proof holds.

Ex. 1. Velocities of 4 feet and 16 feet per second in directions at

right angles to each other are simultaneously communicated to a body :

determine the resultant velocity. Ans. 16"49 feet per second.

Ex. 2. A ship whose head points N.E. is steaming at the rate of

12 knots an hour in a current which flows S.E. at the rate of 5 knots an

hour, find the velocity of the ship relative to the sea bottom.

Ans. 13 knots an hour.

7. All the objects around us that we can see and

touch, and even invisible substances, such as air, are

material bodies or composed of matter. The various pro-

perties of matter, such as hardness, density, &c., can be in-

vestigated, but no definition of matter can be given which
would give any idea of it to a being that had had no ex-

perience of it.

Any limited portion of matter is called a ' material

body' or simply a 'body'. When we consider a body
whose dimensions are so small that we are only concerned

with its motion as a whole, and not with any rotational

motion it may have, we describe it as a material particle^
or simply a particle.

The term ' mass
'

is synonymous with the phrase

'quantity of matter', so that the mass of a body means
the quantity of matter in it. We shall learn afterwards

(Art. 9) what is meant by saying that the quantity of

matter in one body bears a certain ratio to that in

another.

8. Statics is the science which treats of the equi-
librium of bodies under the action of 'forces'. A defini-

tion of the term 'force
'

is supplied by Newton's 1st

Law, which asserts that 'Every body remains in a state of
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rest or ofuniform motion in a straight line, except in sofar !

as it may he comj^elled by impressed forces to change that

state '.

Force, then, is that which alters or tends to alter the

state of rest or of uniform motion in a straight line, of a

body. It is not necessary to suppose that the state of rest

or of uniform motion is actually altered by a force, because

other forces may be in action which counteract the etfect

of the first. If we observe a body moving in any way
other than uniformly in a straight line, we infer that it is

acted on by force: e.g. when we find that the planets
move in nearly elliptic orbits, we know that each is under
the action of some force: similarly when we see that a

falling body moves with gradually increasing velocity, or

that another is stopped, we know that a force has acted

on each of them. If a force acts for a time on a body,

producing a change in the body's velocity, it is clear that
|

if it continues to act, it will tend to produce a still further '

change.
I

9. The next question that presents itself is
' How is

force measured?
'

or 'When may this force be said to bear
|

such and such a ratio to that force?' We know by ex-

perience that it requires a greater effort on our part to

impart velocity to a large amount of any substance than
it does to impart the same velocity to a small amount, but
what determines the exact ratio that exists between the

two forces?

Our own sensations do not give us an accurate scale by
which the forces may be measured. The answer is con-

tained in Newton's 2nd Law, wdiich asserts that 'Change of
'

motion is proportional to the impressed force and takes

place in the direction of that force'. ;

What does the expression
'

Change of Motion mean ?
i

First, let us suppose that a number of different forces

act on the same particle during equal intervals of time, so
\

that the only variations in the different cases are the '
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differences in the mao^nitudes and directions of the forces

and in the changes of velocity produced. In this case,
'

Change of Motion is understood to be a quantity pro-

portional to change of velocity. Hence forces are equal if,

when they act for equal times on the same particle, they

produce equal changes of velocity, and the ratio between
the magnitudes of two forces is the ratio between the

respective changes of velocity they produce in the same

particle, after acting for equal times. The direction of a

force is clearly defined by the latter part of the law as the

direction of the change of velocity produced by the force.

It is of course to be understood that the change of

velocity meant is not necessarily the increase or decrease

of the particle's velocity, but that velocity which, com-

pounded with the particle's initial velocity, will give the

final velocity.

Suppose now that a number of equal forces act one on

each of a number of particles for the same time, and

produce the same changes in their velocities : we express
the relation that holds among the particles by saying they
are of 'equal mass\

If there be n particles of equal mass, initially all

moving side by side with the same velocity, and n equal
forces act, one on each, in the same direction, for the same

length of time, the particles will finally be found moving
side by side with the same velocity. Hence we infer, that

to produce in a particle, whose mass is 7i times that of

another, the same change of velocity that a given force

produces in the latter, and in the same time, a force n
times as great as the given force has to be applied to the

former. It seems then, that the force varies as the mass of

the particle, if the change of velocity produced in a given
time is always the same, and we have seen that it varies

as the change of velocity produced in a given time, when
the mass remains constant. The numerical measure of a

force then is proportional to the product of the mass acted

upon into the change of velocity produced in a given time.
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The expression 'change of motion' means the product of

the mass into the change of velocity produced in the given
time, or the change of Momentum produced in the given
time, if the momentton of a particle be defined as the

product of its mass into its velocity.

10. We are all of us familiar with some instances of the manifestation

of force. For instance, we may set a body in motion or stop it by

pushing it, either directly with the hand, or by means of a rod, or we may
pull it by a string attached to it : we may also expose it to the action of the

wind or to the pressure of steam. In all these cases the force is exerted

by tangible means, but force is often manifested without any tangible

means, as in the case of gravity, the name given to the force which causes

any body near the earth to move towards it, and the planets to revolve in

their orbits about the sun; also in the case of the force which causes

small pieces of iron to move towards a magnet held near them. A force

ctf this kind is called an attraction.

In both theoretical calculations and in actual practice
we must fix on some standard force which is to be the

unit. In theoretical calculations we take as our unit the
*

dyne ',
which is the force required to generate in one

second a velocity of 1 centimetre per second in a mass

equal to that of a cubic centimetre of distilled water at

4^C. This is called the 'absolute unit' and the advantage
in its use is, that all the terms involved in its definition

are the same at all points of the earth's surface and indeed

everywhere.

It is found that if bodies be allowed to fall towards the earth in a

vacuum, so that the air does not resist their motion, the velocities with

which they fall are increased every second by an amount always the same

at the same point of the earth's surface, and nearly so all over it. The

force which produces this change of motion in a body is called its

'weight' : hence the w^eights of different bodies are proportional to their

masses, since the change of velocity' produced is the same for all.

Assuming for the present, what we shall prove hereafter (Art. 13),

that when a body is at rest under the action of two forces, they are equal

in magnitude and opposite in direction, we see that the force required to

support a body is equal and opposite to its weight, and would, if it acted
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alone, produce in the body the same change of motion upwards that its

weight does downwards.

In practice in Statics, forces are generally measured in terms of the

weights they would support if they acted upwards : for instance in England
that force that is just sufficient to support a certain lump of metal kept at

the Mint and called the Imperial Pound, is very often regarded as the

unit force, the slight variations in this force at different places being of

little consequence for practical purposes.

The velocity of a falling body is increased every second by 32 feet per

second, approximately.

Ex. 1. If a body weighing 60 lbs. be moved by a constant force

which generates in it in a second a velocity of 5 feet per second, find

what weight the force would statically support. Ans. 9'3 lbs. nearly.

Ex. 2. During what time must a constant force equal to the weight

of one ton act upon a train of 100 tons to generate in it a velocity of

40 miles an hour ? Ans. 3 min. 3^ sees.

Ex. 3. A force which can statically support 25 lbs. acts uniformly for

one minute 'on a mass of 400 lbs. : find the velocity acquired by the body.

Ans. 120 feet per second.

11. Def. The resultant of a number of forces is that

single force whose effect is the same as that of the original
forces.

It frequently happens that there are several forces acting simultaneously

on a body : e.g. a kite in the air is acted on by its weight, by the pressure

of the wind and by the tension of the string attached to it. In the

case of a particle acted on by several forces, we shall shew that there

is a single force which could produce exactly the same effect as the other

forces do.

The second Law of motion states that the change of

motion is proportional to the impressed force and takes

place in the direction of that force, so that if there are

several impressed forces we infer that the actual motion
will be the resultant of the several independent motions

which the forces would produce if they acted separatel}^
because the law holds for each force, and therefore these

independent motions must each be produced. But this
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resultant change of motion might be produced by a single

force, which is therefore the resultant of the original

forces.

12. When a particle is in equilibrium or moving
uniformly in a straight line under the action of a number
of forces there is no change of motion, and therefore the

resultant force must be zero
; conversely, when the re-

sultant force is zero, there is no change of motion, and

the particle must be at rest or be moving uniformly in a

straight line. The necessary and sufficient condition of a

particle's being in equilibrium under the action of a

number of forces is that their resultant be zero.

Note, strictly speaking, if the resultant force on a particle is zero,

it only shews that the particle's velocity is undergoing no change, and not

that it is necessarily zero. As however in this subject we always suppose

the particle initially at rest, if this condition holds, it will always remain

so.

18. We have already inferred from Newton's second

Law, that the direction of a force is that of the change
of motion it produces, and that its magnitude is propor-
tional to that of the change of motion : so that a force

is completely defined when the magoitude and direction

of the change in velocity it produces in a given time,

when acting on a particle of given mass, are given. A
force may therefore be represeoted completely by the

straight line that represents this change in velocity. We
are now in a position to prove a most important pro-

position, known as the 'Parallelogram of Forces'.

Prop. If two straight lines be drawn from or to a

point representing in magnitude, direction and sense, forces

acting on a particle, and a parallelogram be constructed

having these two lines as adjacent sides, the diagonal
drawTi from or to the point mentioned will represent the

resultant completely.

Let OA, OB be two straight lines representing the

magnitude, direction and sense of two forces acting on
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Fig. 3

a particle. Complete the parallelogram OACB, having
OA, OB for two adjacent sides,

and join OC.

Since OA, OB represent
the forces completely, they also

represent the changes in ve-

locity they would separately

produce in a certain time in

a particle of certain mass.

By the parallelogram of ve-

locities then, OC represents the resultant change of

velocity they would produce in the same time in the

same particle, and therefore represents the resultant of

the original forces.

The following particular case of this proposition is

very important : siuce the diagonal of a parallelogram

always has a finite length unless the two adjacent sides

are equal in length and in opposite directions, the resultant

of two forces is never zero, i.e. the forces do not counter-

balance one another, unless they are equal in magnitude
and opposite in direction.

Cor. If three forces not in one plane acting on a

particle, be represented in every respect by three lines OA,
OB, OC drawn from a point, and a parallelopiped be con-

structed on these lines as adjacent edges, the diagonal OGoi
the parallelopiped represents the resultant in every respect.

Fig.4

For OF is clearly the resultant of OA and OB, and
since OFGG is a parallelogram {OC, FG being equal and
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parallel), OG is the resultant of OF and OC, i.e. of OA^
OB, OC.

Ex. 1. Find the resultant of two forces of 12 lbs. and 35 lbs. respect-

ively, which act at right angles on a particle. Ans. 37 lbs.

Ex. 2. If two forces acting at right angles to each other be in the

proportion of 2 to yJ5, and their resultant be 81 lbs. find the forces.

Ans. 6 lbs., 3>/51bs.

Ex. 3. The resultant of two forces which act at right angles on a

particle is 51 lbs. : one of the components is 24 lbs. : find the other.

Ans. 45 lbs.

Ex. 4. Two forces act on a particle, and their greatest and least

possible resultants are 17 lbs. and 3 lbs. : find the forces.

Ans. 7lbs., 10 lbs.

Ex. 5. Two forces acting in opposite directions to one another on a

particle have a resultant of 28 lbs. : and if they acted at right angles they

would have a resultant of 52 lbs. : find the forces. Ans. 48 lbs., 20 lbs.

Ex. 6. Two forces, one of which is three times the other, act on a

particle, and are such that if 9 lbs. be added to the larger, and the smaller

be doubled, the direction of the resultant is unchanged : find the forces.

Ans. 9 lbs., 3 lbs.

Ex. 7. Shew that if the angle at which two given forces are inclined

to each other is increased, their resultant is diminished.

Ex. 8. If the resultant of two forces is at right angles to one of the

forces, shew that it is less than the other force.

Ex. 9. If the resultant of two forces is at right angles to one force

and also equal to the other divided by J2, compare the forces.

Ans. 1 : J2.

14. Prop. If a particle be in equilibrium under the
action of a number of forces, any one of them is equal
and opposite to the resultant of the rest.

From the definition of a resultant, all the forces but
one can be replaced by their resultant without altering
their effect, so that this resultant force and the remainino:..... .

^
force mamtam equilibrium, which we have seen can only
be the case when they are equal and opposite.
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15. The following proposition known as the 'Triangle
of Forces

'

is practically another way of stating the '

Paral-

leloo^ram of Forces '.

If three forces acting on a particle can be represented
in magnitude, direction and sense by the sides of a triangle,
taken in order, the forces are in equilibrium.

By the phrase 'taken in order' is meant, that the
arrowheads which indicate the directions of the forces,
should all point the same way round the triangle, or that
no two should both point to or from the same point.

Let ABC be a triangle whose sides AB, BC, GA,
taken in order, represent in magnitude, direction and

sense three forces acting on
F'g.5 a particle

—the particle shall

D^
- —-

--^ be in equilibrium.

\ ^^ \ Complete the parallelo-
\ jy^ V gram BGAD. Since BD is

1 y^ \ equal and parallel to GA^ it

\ y^ \ will represent the force repre-
y- ^^^ ^c sented by GA : but the re-

sultant of the forces repre-
sented by B G, BD is represented by BA, and is therefore

counterbalanced by the force represented by AB, so that

the three forces produce equilibrium.

16. Conversely, if three forces keep a particle in equi-
librium, and a triangle be drawn having its sides parallel
to the directions of the forces respectively, the sides are

proportional to the forces to whose directions they are

respectively parallel.

Let BG, BD (fig. 5) represent two of the forces: then,
since they are in equilibrium, AB must represent the

third. But GA is parallel and equal to BD, therefore the

triangle ABG has its sides parallel to the three forces,

and also proportional to them respectively. Any triangle
then, that has its sides parallel to the three forces respec-

tively, must have them parallel to the sides of the triangle
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ABC, and must therefore be equiangular to this triangle:

equiangular triangles are similar ones, so that the forces

are proportional to the sides, to which they are respectively

parallel, of any triangle drawn in the way described.

This proposition may be extended thus : if three forces keep a particle

in equilibrium, and a triangle be drawn with its sides making a constant

angle measured in the same direction, with the directions of the forces

respectively, the sides of the triangle are respectively proportional to

the forces with whose directions they make the constant angle.

For if the triangle be turned in its own plane through an angle equal

to the constant angle, but in the direction opposite to that in which the

angle is measured, each of its sides becomes parallel to the direction with

which it previously made the constant angle, and the proposition becomes

identical with the previous one.

17. The '

triangle of forces
'

can be easily extended

to the '

polygon of forces ',
which is : If a particle be

under the action of a number of forces, which can be

represented by the sides of a polygon taken in order,

the particle will be in equilibrium.

Let the sides AB, BC, CD, DE, EF, FG, GA of the

polygon ABCDEFG, taken in order, represent a number
of forces acting on a particle. Join AC, AD, AE, AF.

By the '

triangle of forces ',
the forces represented by

AB, BC can be counter-

balanced by CA, therefore

A C represents their resul-

tant
;
similar the resultant

of AG, CD is represented

by AD, that of AD, DE
by AE, that of AE, EF by
AF, and that of AF, FG
hj AG\ therefore the re-

sultant of forces represented

hy AB, BC, CD, DE, EF,
FG is represented hy AG',
but forces represented by A G, GA counterbalance one

another, so that the original forces are in equilibrium.

Fig.6
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Note. The forces are not necessarily in one plane.

Cor. To obtain geometrically the resultant of a num-
ber of forces acting on a particle. Draw a series of straight

lines, end to end, AB, BG, CD, BE, FF, FG to represent

completely the forces, whose resultant is required, then

join A G, it represents completely the resultant.

The following particular case of the polygon of forces

may be noticed: the resultant of a number of forces on a

particle, and in the same straight line, is their algebraical

sum, the forces being estimated positive in one direction

and negative in the other.

The converse of the polygon of forces does not hold, because equi-

angular polygons are not necessarily similar.

18. The following theorem, enunciated by Lami, is

the parallelogram of forces in another form.

Prop. If three forces acting on a particle, keep it in

equilibrium, each is proportional to the sine of the angle
between the other two.

Let OA, OB, DC represent three forces P, Q, R which,

acting on a particle, keep it in equilibrium.

With OA, OB as adjacent sides complete the parallelo-

gram OADB : join OD.

ng.7

„ D

B
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OD, 00 must be equal and opposite, since OD
represents the resultant of P and Q.

P : Q : E=OA : OB : 0C= OA : AD : OD
= sin ODA : sin AOD : sin O^D
= sin DOB : sin AOD : sin ^05
= sin BOG : sin AOC : sin AOB
= sin Q, R : sinP, R : sin P, Q.

19. The magnitude of the resultant R, of two forces

P and Q, which act on a particle, and whose directions

make an angle with one another, may be easily found.

Let OA, OB represent the forces P, Q respectiveh'.

Complete the parallelogram OBCA, and join 00 \ the

latter represents R.

F'g.8

But 00^ = OB' + BC - 20B . BC. cos OBC,

BC=AO,sind OBO = 180°-A0B
= 180'-6>,

.-. R' = P'-^ Q'- + 2PQ cose.

Ex. 1. If forces of 3 lbs. and 4 lbs. have a resultant of 5 lbs.,- at what

angle do they act ? Ans. 90'^.

Ex. 2. If one of two forces acting on a particle is 5 lbs., and the re-

sultant is also 5 lbs., and at right angles to the known force, find the

magnitude and direction of the other force.

Ans. Osj2 lbs., making an angle of ISo*^ with the other force.

G. 2
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Ex. 3. At what angle must forces P and 2P act on a particle in order

that their resultant may be at right angles to one of them ? Ans. 120*^.

Ex. 4. If three forces, whose magnitudes are expressed by the

numbers 3, 6, 9, act on a particle, and keep it at rest, shew that they

must all act in the same straight line.

Ex. 5. If the three forces in Ex. 4 act in directions represented by
the sides of an equilateral triangle, taken in order : determine their re-

sultant. Ans. A force 3^3, acting at right angles to the force 6.

Ex, 6. Three forces acting on a particle keep it in equilibrium : the

greatest force is 5 lbs., and the least is 3 lbs., and the angle between two

of the forces is a right angle: find the other force. Ans. 4 lbs.

Ex. 7. Two equal forces act at a certain angle on a particle, and

have a certain resultant: also if the direction of one of the forces be

reversed and its magnitude be doubled, the resultant is of the same

magnitude as before : shew that the two equal forces are inclined at an

angle of 60".

Ex. 8. Determine the resultant of four forces of 5, 6, 9, 10 lbs. acting

on a particle and represented in direction by OA, OB, 00, OD, re-

spectively, where is the point of intersection of the diagonals of a

square ABOD.

Ans. 4.^2 lbs., in the direction bisecting the angle OOD.

Ex. 9. Forces P, P^3, and 2P act on a particle : find the angles be-

tween their respective directions that there may be equilibrium.

A71S. Between P and P^3, 900; between P and 2P, 120"; between

Pjs and 2P, 1500.

Ex. 10. Five equal forces act on a particle, in directions parallel to

five consecutive sides of a regular hexagon taken in order; find the mag-
nitude and direction of their resultant.

Am. The direction is parallel to the third force, and the magnitude

equal that of any one force.

20. The following proposition is sometimes useful.

If two forces acting on a particle be represented by
m times the line OA, and n times the line OB, respec-

tively, their resultant is represented by {7n + n) times the

line OG, where G is the point between A and B, such
that mAG = nBG.
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By the '

triangle of forces
' mOA is equivalent to mGA

and mOG, and the force nOB to nGB and nOG. But
since mAG= nBG, and they are opposite, these two
forces counterbalance one another, so that we are left

with (m + n) OG only.

Fig. 9

21*. Def. Let A^, A^, A^... A,, be a series of points;

join A^A^, and take B^ between them, so that

AB^ = BA
-2 '

join B^A^, and take B^ between them, so that

25,5,
= 5,^3;

join B^A^ and take B^ between them, so that

35 B, = B,A,,2 3 3
—

4 =

and so on until we arrive at B^_^: this point is called the
'

centroid
'

oi A^, A^, A^ ... A^^.

The centroid of the n points A-^^, Jo...^„is sometimes defined as the

point whose distance from any plane is one ?i*'* the sum of the distances

of A^, A^...A^ from that plane. We can easily shew that the definition of

the centroid we have already given leads to this definition also.

Draw A^M^, A.JU &c. J5jA\, B.,N., &c. perpendicular to any given plane.

Draw Ajn^m.2 parallel to
il/jiYjil/.,,

and B^n.^rn^ parallel to N-^N^M.^.

JjJ/i + A.2M.2
= 7ijN^ + A.,m,2 + m.2N^

=
271-^N^ + 2BiWi= 2B^N^,

A^M^ + A.^M^ + A^M^— 2B^N^ + m^M^ + A.^m.^

= Sn^N^ + 3i?o«2
=

3i>\iY2

2—2
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This proves the statement for two and three points, and by the method

of induction the proof can easily be extended to any number of points.

Fig.lO

Note. The distances from the plane must be considered positive when

they are on one side of it, negative when they are on the other. We
may suppose that any number of the points become coincident : for

instance, if A<^ and A^ coincide with A-^, B^ and B^ will also coincide with

A-^, and B.^ will be in the line A-^A^, and such that B.^^A^
—

hB^A-^. We may
extend the idea of the centroid by supposing that some of the points are

negative, in which case the process of finding the centroid will be some-

what modified : for instance, if A^ be a negative point, B.2 will be in AJB-^,

but beyond B^ not between B^ and A.^, and such that i?o^3=2Bo£i : as B.^

is the centroid of two positive and one negative point B^ will divide the

line B^A^ equally. Also the distance of a negative point from a plane

must be taken of opposite sign to what it would be if the point were a

positive one, and in estimating the number of points, we must take the

difference between the numbers of positive and negative points.

22*. Prop. lfOA^,OA^,OA^kc 0^, represent
a number of forces acting on a particle,

their resultant
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will be represented by r times the line 0B^_^, where

B^_^ is the ' centroid
'

of A^, A^... A^.

For, by the last proposition, putting m = w = l, the

resultant of OA^ and OA^ is 20B^ ; putting iii= 1, ?i = 2,

that of OA^ and 20B^ is SOB^, and so on, until we
obtain rOB ,

as the final resultant.

After reading Chap. IV. it will be obvious that the centroid of a

number of points is the Centre of Mass of equal particles situate one at

each point. As a direct result of this proposition we see, that the resultant

attraction or repulsion on a particle of any mass of which each particle

attracts or repels with a force varying as its distance and its mass con-

jointly, is the same as the attraction or repulsion of the whole mass

collected at its Centre of Mass.

Ex. 1. Find a point such that, if it be acted on by forces represented

by the lines joining it to the vertices of a triangle, it will be in equi-

librium.

The required point must be the centroid of the three points, i.e.

(Art. 21) the point of intersection of the lines drawn from the vertices to

the middle points of the opposite sides.

Ex. 2. is any point in the plane of a triangle ABC, and D, E, F
are the middle points of the sides. Shew that the system of forces OA,

OB, OC is equivalent to the system OD, OE, OF.

It can be shewn that the centroid of the points A, B, (7 is also that of

D, E, F. V. Ex. 1.

Ex. 3. The circumference of a circle is divided into a given number

of equal parts, and forces acting on a particle are represented by straight

lines drawn from any point to the points of division : shew that their re-

sultant passes through the centre of the circle, and that its magnitude
varies as the distance of the point from the centre.

The centre of the circle is clearly the centroid of the points.

Ex. 4. AOB and COD are chords of an ellipse parallel to conjugate

diameters: forces are represented in magnitude and direction by OA, OB,

OC, OD: shew that their resultant is represented in direction by the

straight line which joins to the centre of the ellipse, and in magnitude

by twice this line.

The centroid of the points A, B, C, D is midway between and the

centre.
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Ex. 5. Straight lines are drawn from any point parallel to the four

sides of a parallelogram : find the magnitude and direction of the resultant

of the forces represented by these four straight lines. Ans. The direction

is along the line joining the point with the centre of the parallelogram,

and the magnitude is represented by twice this line.

23. Def. The components of a force, in two or in three

given directions, are the forces which acting in those direc-

tions, will have the given force for resultant.

As it is frequently desirable to replace two or more forces by one (their

resultant), so also is it to replace one force by tico (its components), in two

given directions in the same plane w^ith it, and sometimes by thi-ee in

three given directions, which are not all in one plane and no two of which

are in the same plane as the single force.

For instance, imagine a particle, free to move in a straight groove, to

be pulled by a string making an angle with the groove : it is clear that the

tendency of the force is twofold, viz. to make the particle move along the

groove and to press it against the groove. Also it is clear that the one

effect might be produced by a force along the groove and the other by a

force at right angles to the groove : these two separate forces will be the

components in the corresponding directions of the force exerted by the

string.

We have seen that the mechanical problem of compounding two forces

into one is the same as the geometrical one of constructing the diagonal

of a parallelogram, having given two adjacent sides: so also to resolve

one force into its two components in two given directions in its plane, we

have to construct the parallelogram, having given one diagonal and lines

to which the sides are respectively parallel.

24. To find the components of a given force in two

given directions in its plane.

Let 00 represent the force. Draw OA, OB parallel to

the line giving one direction, and OB, OA parallel to the

line giving the other. By the parallelogram of forces, the

force OC is the resultant of OA and OB, which, being in

the given directions, are the components required.

We can easily express the magnitudes of these compo-
nents in terms of 00 and the angles the given directions

make with 00.
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Let P be the force represented by 00 and let the

angles 00A, OOB be a, /3.

Then OA : 0^ = sin 00^ : sin OAO
= sin OOB : sin AOB
= sin /3 : sin (a + /3) ;

.'. the component in direction OA = P -—
t -^ .

^ sm (a + p)

Fig.ll

5, _ n

Similarly that in direction OB = P sm a

sin (a + y5)

*

Since we can construct any number of parallelograms having a given

diagonal, the number of ways in which we can resolve a single force into

two is infinite. The most important case is when the two directions

along which the resolution takes place are at right angles to one another.

25. Pef. When the directions of the two compo-
nents of a force are at right angles to one another, each

component is called the 'resolved part' of the force in the

corresponding direction. When we speak then of the

resolved part of a force in any direction, it is understood
that the force is resolved into two components, one in the

specified direction, and the other in the direction at right

angles to it, and in the plane containing this direction and
that of the original force.

Let Ox be a given straight line, and let OA^, OA^,
OA^ represent a number of forces P^, P^, P^ ,

whose directions, which are not necessarily in one plane,
make angles 6^, 0^, 6^,

&c. with Ox.
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Produce xO backwards to x\ and draw A^M^, A^M^,

AJ^I^, &c. perpendicular to xOx. Then OM^, OM^, OM^, &c.

Fig. 12

represent the resolved parts of P^, P^, P^, &c. respectively

along Ox, and M^A^, M^A^, M^A^ the resolved parts per-

pendicular to Ox.

It is found convenient to adopt the convention that

forces in direction Ox, from left to right, be considered

positive, while those in the opposite direction are considered

negative.

In the above figure it will be seen that with this con-

vention the resolved parts along Ox of P^, P^ and P^ are

positive, while those of P^ and P^ are negative.

OM^ = OA^ cos
(9j, A^M^ = OA^ sin

<9^, OM^ = OA^ cos
(9,,

&c.

Hence the numerical values of the resolved parts of the

forces along Ox are P^ cos
6^, P^ cos 6^, &c. and those per-

pendicular to it are P^ sin
0^, P^ sin

0^,
&c.

It is easily seen that these values also give the alge-
braical values of the resolved parts, the signs being deter-

mined in accordance with the above convention.

Note. When the forces are in one plane, their resolved

parts at right angles to Ox are in the same straight line,

but not otherwise.
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If X, Y are the resolved parts of a force P, in two
TT

2
directions, making angles 6 and ^

—
respectively, with P,

we have seen that

.Y= P cos e, and Y= P sin (9,

.-. P = JX^TT' and tan 6 = Y/X.

26*. To find the components of a force in three given
directions, which are not all in the same plane, and no two
of which are in the same plane as the original force.

Let the line AB represent the given force.

Through both A and B draw three planes parallel to

/ N

/ '^^^>^ .....X—^- --^D
I

AY
' ''

H^ 7— -X- -,-.«.'^

^v ''CA ^

each pair of the given directions. These six planes will

form the faces of a parallelopiped of which AB\^ the dia-

gonal, and each edge of which will be parallel to one of the

given directions.

By Art. 13 the edges AE, AC, and AH will repre-
sent forces of which AB 'y^ the resultant, and which are

therefore the required components.

The only case which is of much interest is when the

given directions are mutually at right angles to one
another : the components are then termed the resolved

parts in the corresponding directions.

Let P be the given force, X, Y, Z the resolved parts in

the directions AG, AE, J. irrespectively, which make angles
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a, P, 7 with AB. But AC = AB cos a, J.^ = AB cos yS,

and ^jy = AB cos 7,

and AB'=BF' + AF'= AW + AG^ + AH\
.', X =Pcosa, Y= P cos/3, Z—F cosy,

and P' = X'+ Y' + Z\

Hence cos^a + cos^/3 + cos^7 = 1.

Ex. 1. Shew how to resolve a given force into two others, of given

magnitude. When is this impossible ?

Ex. 2. Find the components of a force P, when they both make

angles of 30° with it. Ans. Each is P/^/s.

Ex. 3. Find the components of a force P in two directions, making

angles of 60*^ and 45° with P on opposite sides.

Am. 2P/(1 + VS) and P^6/(1 + x/3).

Ex. 4. Three forces of 5, 2, and 7 lbs. respectively act on a particle

in directions mutually at right angles : determine the magnitude of their

resultant. Ans. ^78 lbs.

Ex. 5. Three forces, represented by three diagonals of three adjacent
faces of a cube which meet, act at a point : shew that their resultant is

equal to twice the diagonal of the cube.

Each of the forces may be resolved into two components, represented

by those edges of the corresponding face, which meet in the point: the

three forces are equivalent then to the three forces represented by twice

the edges of the cube, which meet in the point, i.e. to twice the diagonal

of the cube. A similar result holds for any parallelopiped.

The purelij geometrical propositions of the next three Articles are

extremely useful.

27. Def. If perpendiculars be dropped from the

ends of a given finite straight line on any other given

straight line, the length intercepted between the feet of

these perpendiculars is called the orthogonal projectio7i of

the first line on the second. (The two lines are not neces-

sarily in one plane.)

Let AB be the given finite line, PQ the line on which
it is to be projected.
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Draw A a, Bh perpendicular to PQ, then ah is the

orthogonal projection oi AB on PQ.

Fig.l4

We shall make a convention here, similar to that we
have already made about the resolved parts of forces :

viz. ii AB be regarded as drawn from A to B, its pro-

jection is ah, measured from a to h, whereas if BA be
measured from jB to ^, its projection is ha, measured from
h to a. The projections are considered positive when
measured from left to right as ah is, negative when mea-
sured in the opposite direction as ha. These signs apply
to figure 14: they are reversed for figure 15.

Fig.15

<?

28. Bef. The angle between two lines not in the
same plane is the angle between one of them and a line,

intersecting it and parallel to the other.

Prop. The orthogonal projection of any line on another
is the product of the projected line and the cosine of the

angle between them.

Let AB hQ any finite line, PQ the line on which it

is projected, a the angle between them.
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Draw Aa perpendicular to PQ, and let Bb'b be a plane

through B perpendicidar to PQ, cutting the latter in b.

Fig.16

Draw Ab' parallel to ab. Then Ab' is at right angles
to the plane Bb'b, the angle Ab'B is a right angle, and
BAb' = a. Since Aa, b'b are both perpendicular to a6, and
are in the same plane, they are parallel, and Ab'ba is a

parallelogram ;
hence ab = AV = AB cos a.

Observe that a is the angle between AB, and a line

drawn from A parallel to PQ in the direction in which
the projections are estimated positively. If a is an obtuse

angle, the projection is negative. The angle which BA
makes with PQ is two right angles greater than that which
AB makes with it.

29. Prop. The algebraical sum of the projections of

the two straight lines AB, BG on any straight line is

equal to the projection oi AC on the same line.

Draw Aa, Bb, Cc at right angles to the given straight
line PQ, then

projection of AB = ab (positive),

BC =bc (negative),

AC = ac (positive),

and ab — bc = ac,
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therefore the algebraical sum of the projections of AB,
BG = the projection of A C.

Fig.17

The above signs refer to the figure given ; the student can convince

himself of the generaUty of the truth of this proposition by drawing

different figures.

Cor. The algebraical sum of the projections of the lines

AB, BG, GD, DE, EB\ FG (fig. 6), drawn end to end, and

measured all the same way round, on any line is equal to

the projection of the line AG.

For the algebraical sum of the projections of AB, BG
= the projection of A G,

that of projections of A G, GD = projection of AD,

AD, DE= AE,

AE,EF= AF,

AF,Fa = AG,

therefore the algebraical sum of the projections of AB,
BG, GD, DE, EF, FG = the projection oi AG.

The same holds for any number of such lines.

30. It follows at once from the figure, or from the

expressions for the resolved part of a force in any direc-

tion, and the projection of a line on a straight line, that

the orthogonal projection of the line representing a force,

on any straight line, represents in every respect the resolved

part of the force in the corresponding direction.
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Prop. The algebraical sum of the resolved parts in

any direction of a number of forces acting on a particle,
is equal to the resolved part of their resultant in that

direction.

This proposition follows at once from the last, for if,

(%. 6), AB, BG, CDy...FG represent the forces, AG re-

presents their resultant
;
and the algebraical sum of the

projections on any straight Hue, of AB, BC,...FG, which

projections represent the resolved parts of the forces in

the corresponding direction, is equal to the projection of

A G, which represents the resolved part of the resultant.

31. We can now obtain expressions for the magnitude
and direction of the resultant of a number of given forces

acting on a particle.

First, let the directions of the forces all lie in one

plane.

Let Pj, Pg. . . be the forces, whose directions make angles

ftj, a^, &c., with the line Ox in the plane of the forces :

let Oy be a line at right angles to Ox in the same plane.
Let R be the resultant of the forces and 6 the angle its

direction makes with Ox.

Then from the proposition just proved

Pj cos
(Xj
+ Pg cos a^-\- ... = R cos 6,

and Pj sin a^ + P^ sin
oi^
+ ... = Rsm6,

therefore, R' = [S (P cos a)]' + [t (P sin a)]^

^ t[P sin a]
and tan a =^m =r

•

2^ [P cos aj

32*. Secondly, when the directions of the forces are

not necessarily in one plane.

Let Pj, Pg, P3, &c. be the forces, whose directions make
with three straight lines Ox, Oy, Oz mutually at right

angles, angles a^, fi^, <y^, a^, ^^, y^, Kg, ff^, 73, &c. respectively.
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Let R be the resultant of these forces, a, /3, <y the

angles its directions make with Ox, Oy, Oz, respectively.
Then

Pj cos
ftj
+ I\ cos a^+ ... =R cos a,

Pj cos
/3, + P^ cos

/^^ 4- . . .
= jR cos /?,

Pj cos 7j + P2 cos l3^+ ... = B cos 7,

.-. P^=[2(Pcosa)]'^ + P(Pcos/9)P+P(Pcos7)P,
1 (P cos a)

V{[X(Pcosa)]^+[S(Pcos/3)P+[2:(Pcos7)]^j
'

with symmetrical expressions for cos /3 and cos 7.

33. If the resultant of a number of forces acting on
a particle be zero, its resolved jDart in any direction is

zero also
;
hence if a system of forces be in equilibrium,

the algebraical sum of their resolved parts in any direction

is zero. Conversely, if the algebraical sum of the resolved

parts of a number of forces in any direction be zero, the

resolved part of their resultant in that direction must be
zero also, i.e. the resultant, if not zero, acts perpendicularly
to that direction. Hence a system of coplanar forces acting
on a particle is in equilibrium, provided the algebraical
sums of their resolved parts in two directions in the plane
are zero. If the forces are not in one plane, they are in

equilibrium, provided the algebraical sums of their re-

solved parts in three directions not in the same plane, are

severally zero.

We may assert then, that the necessary and sufficient

conditions of equilibrium of a system of forces acting on
a particle are, that the algebraical sum of their resolved

parts in three directions not in the same plane, or, in the

case of the forces being in one plane, that the algebraical
sum of their resolved parts in two directions in that plane,
be severally zero.

These conditions have been directly deduced from the condition that

the resultant should be zero: in practice they are often found to be

easier of expression than the geometrical one.
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Ex, 1, ABCD is a square. A force of 3 lbs. acts along AB, one of

4 lbs. along AC, and one of 5 lbs. along AD; find the magnitude and
direction of their resultant.

Ans. \/50 + 32/^2, making with AB an angle tan-^ {7
- 4^).

Ex. 2, Three forces act on a particle in one plane: they are lib.,

5 lbs., and 3 lbs. respectively, and the force of 5 lbs. is inclined at an angle
of 30" to each of the others : find their resultant.

Ans. V 38 + 20/^3 lbs., making with the direction of the force of 5 lbs.

an angle cot"^ (5 + 2,^3) on the side of the force of 3 lbs.

Ex. 3. At the point the intersection of the diagonals of a square

ABCD, act forces of 2 lbs, along OA, 4 lbs. along OB, 3 lbs. parallel to

CD, and 1 lb. parallel to DA : find their resultant.

Ans. ^y30 lbs., making with CD an angle tan"^ ---—p .

o — ^2
Ex. 4, Three forces P, P and P1J2 act on a particle in directions

mutually at right angles : determine the magnitude of the resultant and
the angles between its direction and that of each component,

Ans. 2P, making with either force P an angle of 60^, and with Pfj2
an angle of 45*^.

Ex. 5. A particle is placed at the corner of a cube, and is acted on

by forces of 1, 2 and 3 lbs. respectively, along the diagonals of the faces

of the cube, which meet at the particle : determine the magnitude of the

resultant. Ans. 5 lbs.

34. Def. The moment of a force about any point is

measured by the product of the force into the length of

the perpendicular from the point on the line of action of

the force.

(The line of action of a force is a line, drawn through
the particle on which the force acts, in the direction of

the force.)

Let P be a force acting on a particle situate at A,
and be any point : draw 031 perpendicular to P's line

of action, then P x OM measures the moment of P about

0. The magnitude of the moment of P is clearly inde-

pendent of the position of A, provided the line of action
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remain the same. It is convenient to make the convention

[0

Fig. 1 3

AM ^P

that if the force tends to move the particle round in the

same direction as the hands of a watch, when looked at

from above, the moment is of one sign, when in the

opposite direction, of the other sign. The latter is gener-

ally taken as the positive moment. In the above figure
the moment is positive.

The moment of a force is zero, when the force itself is

zero, or when its line of action passes through the point
about which the moments are estimated, and in these tw^o

cases only.

The student is recommended to accept the above definition of the

moment of a force, and to follow the theorems concerning it, without

troubling himself at first to learn the physical meaning of the term.

35. Prop. The moment of a force about a given

point is algebraically equal to the moment of its resolved

part at right angles to the line joining the point wdth

the particle, on which the force acts.

Let P be the force acting on the particle Sit A,

^PsinB

G.
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the given point. Draw OM perpendicular to P's line of

action and join OA. Let 0A3I=6. The resolved part
of P at right angles to OA is P sin 6.

The moment of Psin 6 about = P sin ^ . OA
=PxOM
= moment ofPabout 0.

It is also evident that these moments are of the same

sign.

36. Prop. The algebraical sum of the moments of

a number of coplanar forces, acting on a particle, about

any point in their plane is equal to the moment of their

resultant about the same point.

Let A be the position of the particle, the given
point.

, The algebraical sum of the moments of the forces about

= the algebraical sum of the moments about of their

resolved parts perpendicular to OA
= OA X the algebraical sum of these resolved parts
= OA X resolved part of their resultant in this direction

= moment of their resultant about 0.

37. By means of the last theorem the conditions of

equilibrium of a system of coplanar forces acting on a

particle, can be put into a different form.

Prop. A system of coplanar forces acting on a particle
is in equilibrium, provided the algebraical sum of the

moments about each of two points in the plane but not

in a straight line with the particle, be zero.

For the algebraical sum of the moments of the forces

about any point in their plane is equal to the moment of

their resultant about the same point: therefore the moment
of their resultant about each of the two points is zero, so

that either the resultant is zero, or its line of action passes

through both the points ;
the latter cannot be the case as
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the line of action passes through the particle. Hence
the forces are in equilibrium.

Conversely, if the forces are in equilibrium, it follows

that the algebraical sum of their moments about any point
in their plane is zero.

38. Def. If a force be resolved into two components
respectively parallel and perpendicular to a given straight

line, the product of the latter component into the common

perpendicular to its line of action and the given line, is

called the moment of the force about the given line. If the

force tend to turn the particle it acts on, in one direction

about the given line, the moment receives the positive

sign ;
if in the opposite direction, the moment is taken to

be negative.

Let P be the force acting on a particle at A : CD the

Fig.20

given straight line. Let be the point where CD inter-

sects a plane through A perpendicular to CD : let Q be
the resolved part of P at right angles to CD. Q's direction

is in the plane OA : draw Oj\[ perpendicular to it.

Then P's moment about CD = Q x DM
= moment of Q about 0.

3—2
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Now OM is perpendicular to CD and therefore to a

plane parallel to CD containing P's line of action. But
since CD is parallel to this plane, all points in CD are at

the same distance (equal to OM) from it
;
and Q is the

same wherever A be in the same line of action
;
therefore

the moment of P about CD is independent of the position
of A in its line of action.

It is obvious that the moment of a force about a line

is zero, if its line of action and the line are coplanar or if

the force is zero, and in these cases only.

S9. Prop. The algebraical sum of the moments of

a number of forces acting on a particle, about any straight
line is equal to the moment of their resultant about the

line.

For, if (fig. 20) A be the position of the particle, CD
the given line, the algebraical sum of the moments of the

forces about CD is equal to that of the moments of their

resolved parts in the plane through A, perpendicular to

CD, about the point of intersection of CD with this

plane, i. e. is equal to the moment about of the resultant

of these resolved parts, or to the moment about of the

resolved part in this plane, of the resultant of the original

forces, i.e. to the moment of this resultant about CD.

Cor. Hence if the forces are in equihbrium, the

algebraical sum of their moments about any line is zero,

for if their resultant is zero, its moment about any line

is also zero.

40. Recapitulation. We began by shewing from purely

geometrical considerations how we can compound the in-

dependent velocities of a moving point, into a single
resultant velocity, by means of the 'parallelogram of velo-

cities.' From Newton's First Law we obtained a general
idea of force as that cause, which, acting on a body, tends

to alter the state of rest or uniform motion in a straight

line, which is the condition of all bodies not acted on by
force. Newton's Second Law defined the direction of a
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force, and stated that its magnitude is proportional to the

change of momentum produced by it in any body after

acting on the latter for a certain time
;
from this and the

'

Parallelogram of Velocities' we deduced the fundamental

Proposition in Statics, the 'Parallelogram of Forces.' Then
followed other theorems, the 'Triangle of Forces,' the
'

Polygon of Forces,' Lami's theorem, &c., modifications of

the Parallelogram of Forces, which often enable us to

solve Statical Problems more easily than the original

proposition. Having shewn that the algebraical sum of

the resolved parts in any direction of a number of forces

acting on a particle is equal to the resolved part of their

resultant in that direction, we obtained expressions for

the magnitude and direction of the resultant of a number
of forces. From this and because the sole necessary and

sufficient condition of equilibrium of a number of forces

acting on a particle is that their resultant be zero, we
obtained a set of conditions of equilibrium which is often

easily applied to the solution of problems. Another im-

portant set of conditions of equilibrium we deduced from

the proposition that the algebraical sum of the moments
of a number of forces, about any straight line, or in the

case of coplanar forces, about a point, is equal to the

moment of their resultant about the same line, or point.

41. Tension of a String. A very common way of transmitting force

is by means of a flexible string, rope or chain. Now when a string AB
is stretched by the application of forces it is a matter of everyday expe-

rience that if it be cut at any point P, the two ends on either side of P

sepai'ate: what then prevented the portion AP from moving before the

string was cut ? Clearly the force which the other portion PB exerted on

it, and similarly the latter was prevented from moving by the force which

AP exerted on it. But we shall see in Art. 4-i that these forces are equal

to one another, and act in opposite directions along the lines joining the

two adjacent particles on either side of P, i.e. along the tangent at P to the

curve formed by the string ;
if the string is straight, these forces will act

along it. Either of these forces is called the tension at P. If the tensions

at all points of the string are the same, we speak in general of the tension

of the string.
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There is a limit to the tension which any given string can exert, and

if we try to transmit a force greater than this by means of the string, it

will break.

The above remarks apply to rods also if they are stretched, but the

tension becomes a pressure, if the tendency of the forces on them is to

compress them.

42*. Extensible Strings. The following experimental law, due to Hooke,

gives the relation between the extension of an extensible string or rod, the

tension along it, and its natural length, i.e. its length when unstretched.

For strings of the same material and tJiichiess, the extension varies as the

tension and the natural length conjointly.

If I be the natural length, l' the length when stretched, t the tension,

we may write the law symbolically,

I'-l cc It,

or V -l= - ,

A

where A is a constant for the particular string in question.

We assume that the tension of the string is t throughout the whole

length to which we apply the law. For many substances, such as steel,

this law is only true so long as the extension is small compared v/ith the

natural length, but in others, such as india-rubber, the limits within

which it holds are much wider. It is easily seen that X is the tension,

which, if the law held whatever the extension is, would stretch the string

or rod to double its natural length.

X is termed the Modulus of Elasticity for strings of the same material

and thickness.

43. We shall often have to consider the equilibrium of bodies which

are not free to move in any direction, but are constrained by surfaces,

curves, &c. with which they are in contact. For instance, suppose a

small body inside a fine tube ;
the only possible motion of the body is

along the tube, i.e. the tube itself will supply the force necessary to

prevent motion in any other direction : if then the resultant force on the

body, not including the force exerted by the tube, be perpendicular to the

tube, we know that the body is in equilibrium. Similarly, if a particle

be on a plane, and the resultant force, not including the force exerted by

the plane, be perpendicular to the plane and towards it : this force, how-

ever great, will be counteracted by the force exerted by the j)lane and the

particle will be in equilibrium. If, however, the resultant force is away
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from the plane, the particle will move, as the plane cannot exert a force

to prevent motion away from itself.

Smooth planes or tubes are those which can only exert forces perpen-
dicular to themselves and are the only ones with which we shall have

to do at present. A plane or tube which can oppose the motion of a

particle along itself, or in other words, can exert a force not entirely per-

pendicular to itself, is termed rough. The same may be said of a curved

surface if we take the tangent plane at the point where the particle touches

it, as the plane considered above.

Such forces as the pressures exerted by surfaces, &c., and the tensions

of inextensible strings, are called into play by the actions of other forces

which tend to press the body against the surface, or to stretch the string ;

the former only act when the latter do. Also, if the surface and the

string be supposed strong enough, each is capable of exerting a force of

any magnitude, if such a force is necessary to preserve equilibrium.

Such forces are termed ^passive/ forces, and it is axiomatic that their

magnitudes will always adapt themselves so as to maintain equilibrium,

if possible.

ILLUSTRATIVE EXAMPLES.

Ex. 1. Assuming that the Parallelogram of Forces holds as regards

direction, to prove it as regards magnitude.

Let AB, AC represent two forces in magnitude and direction: complete
the parallelogram ABDC, and join AD. By hypothesis AD is the direc-

tion of the resultant of the two forces. The force then which will counter-

act these two forces must act in the dii'ection DA : produce DA to E so
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that AE represents the magnitude of this last force. The three forces

AB, AC, AE are in equilibrium.

Complete the parallelogram ACFE, and join AF. By hypothesis, AF

represents the direction of the resultant of AG and AE] AF then is in a

straight line with AB ;
i.e. is parallel to CD, and ADCF is a parallelo-

gram.
.-. AD =FC=AE.

Hence AD represents the magnitude of the resultant of the forces

represented by AB and AC, since it is equal to AE which represents the

force that would counteract them.

The converse proposition could be proved in a similar way.

Ex. 2. Forces P, Q act at a point 0, and their resultant is R: if any

transversal cut their directions in the points L, M, N respectively, shew

that
P Q R

+ ^ -
OL OM ON

Through N draw Nl parallel to Oil/, and Nm parallel to OL,

Fig,22

The triangle OIN has its sides parallel to the directions of the forces

P, Q, R respectively, and if R be reversed, these forces are in equilibrium;

hence (Art. 16) each side is proportional to the force to whose direction it

is parallel, i.e. Oi=/AP, lN= ixQ, ON=iJiR.
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1

1

1

At

01 IN \
'^

om)OL

01

OL

ON

+
Yjt) ^J similar triangles,

Ex. 3. Shew that the resultant of three forces acting on a particle
and represented by AP, PB, PC, where P is the orthocentre of a triangle

ABC, is represented in magnitude and direction by the diameter of the

circle ABC, which passes through A.

DrawAH the diameter of the circle ABC: join BH, CII: then the angle

By the 'triangle of forces' the resultant of AP,ABH is a right angle

Fig.23

PB is represented by AB, since the forces AP, PB, BA acting on a

particle would maintain equilibrium.

We have then to prove that AH is the resultant oi AB and PC.

But by the triangle of forces, AH is the resultant of AB and BH;
hence the problem reduces to the geometrical one of proving that PC is
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equal and parallel to BH. Since they are both at right angles to AB
they are parallel.

For a similar reason, BP and CH are parallel.

.*. PBHC is a parallelogram.

„
.-. PC=HB.

Ex. 4. Two forces act along the sides CA, CB of a triangle ABC,
their magnitudes being proportional to cos^, cosB. Prove that their

resultant is proportional to sin C, and that its direction divides the angle

(7 into two parts, ^{C + B-A), ^{C + A-B).

Let Zccos^, kcosB be the forces, B their resultant, ^ the angle its

direction makes with CA.

Fig.24 C

If E were reversed, the three forces would be in equilibrium (Art. 14),

and then each force would be proportional to the sine of the angle

between the other (Art. 18).

.-. R : kcosA : /ccosJS = sinC : sinC-^ : sin ^.

sin {C ~e) _ cos A
sin 6

""
cosB '

solving for 6 we obtain cot = tan B,
!

•

.-. e= ~-B = l{A + C-B),

and C-^ = nC + B-^),

, T. ^ cos J5 sin C . . ^
and R = .

—^ = k sm C.
sm 6

Ex. 5. Three forces P, Q, R in one plane, act on a particle, the
|

angles between R and Q, P and R, and P and Q being a, p, and y
j

respectively : prove that their resultant ,

-
[p-^ + q^ + E^ + 2QR cos a + 2RP cos ^ + 2PQ cosy]',

|
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Let Zj, Yi be the resolved parts of P in two directions at right angles
to one another, X^, Y.^ and X3, Y^ those of Q and R respectively in the same
directions. Then (Art. 31) the resultant

= ^/{[X^ + X, + X^r- + {Y^+Y._+Y,Y].

But (Zi + X^f + (Fi + 72)^
= (resultant of P, Qf

z=p2+Q2 + 2PQcos7.

Similarly (X^ + X^Y +{^2+ "^z?=Q^+ R'- + 2RQ cos a

and (Z3 + Ai)2 + (F3 + rj)2
^ p2 ^ _R2 ^ 2PQ cos ^.

.-. adding

(Zi + A'2 + Z3)2+(Fi+ 72+ F3)2+ Zi2+ 7,2+ ^22+ F22 + Z32+ 732

= 2(P2+g2 + jj2 + pQcoS7 + PPcos]3 + gPcosa),
.-. (Ai + A2+ A3)2+(7i + 72+73)2

= P2+ (52 + 2^2 + 2PQ COS 7 + 2QR cos a + 2PP cos
^3),

•
.

• P2= Zi2 + Y^2^ Q2^ ;^^2 ^ Y^% R^= Z32 + 732 :

whence the required result.

The same result can be obtained by resolving in three directions

mutually at right angles, when P, Q, R are not in one plane.

Ex. 6. Forces act through the angular points of a triangle perpen-
dicular to the opposite sides, and are measured by the cosines of the corre-

sponding angles ;
shew that their resultant is ^^(1

- 8 cos A cos B cos C).

We obtain the resultant by substituting in the last example

cos A for P, cos B for Q, cos C for P,

TT-A for a, TT-B for
/3, and tt - C for 7.

.
•

. the square of the resultant = cos^^ + cos2B + cos2 C
- 2 cos A cos B cos G -2 cos B cos C cos A -2 cos C cos B cos A

= l-sin2^ + cos2p + cos2C-6cos^ cos P cos C

= l + cos(.4-P)cos (A+B) +cos2 0-6 cos ^ cos Poos C
= l-cosC{cos(yl-P) + cos (A+B)} - 6 cos .i cos P cos (7

= 1-8 cos A cos P cos C.

Ex. 7. Prove that the resultant of forces 7, 1, 1, and 3 acting from

one angle of a regular pentagon towards the other angles, taken in order,

is Jn.

Let ABODE be the pentagon, AB, AC, AD, AE the lines along which
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the forces 7, 1, 1, and 3 respectively act. Draw AF at riglit angles to DO.

The angles BAF, EAF each = 54o, the angles CAF, DAF each--18o.

Eesolve the forces in directions AF, FC.

X, the algebraical sum of resolved parts in direction AF
r= (7 + 3) cos 540 + (1 + 1) COS 180= 10 cos 54« + 2 cos 18«

Y, the algebraical sum of resolved parts in direction FC
=

(7
-

3) sin 540 + (1
-

1) sin I80= 4 sin 54^ = v^5 + 1.

Wlience the resultant, s/{X^+ Y^)= sjfh

The student has sometimes a difficulty in choosing the lines along

which he should resolve the forces, since all directions are open to him

for that purpose: it is very important that he should select them

judiciously, in order that the work may be simplified. The directions

selected in the above example were chosen because they were sym-

metrically placed as regards the forces.
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Ex. 8. Prove that if be the centre of the circumscribing circle, and
0' the centre of peri^endiculars of a triangle ABC, the resultant of forces

represented by OA, OB, OC is represented by 00'.

By Art. 22, we shall prove the required result, by proving that the

centroid of ^, B, C is in 00', at a distance from 0,
i that of 0' from 0.

Draw OD, AO'D' perpendicular to BC: join AD, cutting 00' in P.

Fig.26

Now 0D =R cos A, and AO' -2R cos A,

where R is the radius of the circle ABC.

.-. A0'= 20D and 0'P= 20P, and AP=2PD.

Hence P is the centroid of ABC, and 0P= 100'.

Ex. 9. A given number of forces acting on a particle are represented
in magnitude and direction by straight lines drawn from the focus of

a conic to the curve : shew that if the sum of the forces be constant, the

locus of the extremity of the line representing the resultant is a straight

line.

Let S be the focus; let SP, SQ be 7i straight lines drawn from S

to the conic so that SP + SQ + , . .
= a constant.

Draw PM, QN, &c. perpendicular to the directrix corresponding to 5 ;

then since SP=^ePN, SQ = eQN, &c.,

PM + QiV+ &c. = a constant.

Let be the centroid of P, Q, &c., then (Art. 21) the distance of O
„ ,1 .. , . PM^QN+... ^ ,irom the dn-ectrix = ~ = a constant.

11
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Hence lies on a straight line parallel to the directrix, and the end

Fig. 27.

of the line representing the resultant lies on another line parallel to this,

but n times its distance from the focus.

Ex. 10. Forces P, Q, R act from the angular points of a triangle

ABC, perpendicular to the opposite sides : prove that if their resultant

pass through the centre of the circumscribing circle,

P (c cos B~h cos C) + Q (a cos G -c cos A) -\-E{h cos A- a cos B) — 0.

Let be the orthocentre, 0' the centre of the circumscribing circle.

Let D,E, Fhe the feet of the perpendiculars from on the sides of

the triangle ; D', E', F' the feet of the perpendiculars from 0' on the same.

Fig.28

0>f£'
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Since the resultant of P, Q, R passes through 0', its moment about

O' is zero.

.'. the algebraical sum of the moments of P, Q, R about O'is zero

(Art. 37).
.•. P.DD'+Q.EE'-R.FF'=0,

.'. P(c cos i?-|j+Q(a cosC--)-P (acosP- k)=0;

.*. P(ccosP-&cos C) + Q (acosC— c cos A) + R{h cos A -acosB) = 0.

In the above figure we see that the forces P and Q tend to move a

particle situate at in the opposite way round 0' to that in which R
would move it : their moments therefore are of the opposite sign to that

of P.

The student may verify for himself that the same result would be

obtained were the figure different. He should specially notice in the above

example that the required result was obtained by expressing that the

algebraical sum of the moments about 0' was zero, 0' being on the line of

action of the resultant.

Ex. 11. A particle of weight IF is supported on a smooth inclined

plane by means of two strings of given lengths, which are attached to the

particle C and to fixed points A, B in a, horizontal line in the plane and

at a given distance apart. It is required to find the tensions of the strings.

The sides of the triangle ABC being known, the angles which AC, BC
make with the horizontal line AB are known : let 6, 6' be their comple-

ments. Let a be the inclination of the plane to the horizon. Draw CD
perpendicular to AB.

Fig, 29
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The particle is in equilibrium under the action of four forces, its weight

ir which acts vertically downwards, the tension T of the string AC, T,
that of BC, and the pressure of the inclined plane R, which acts at right

angles to the plane.

We shall apply the conditions of equilibrium obtained in Art. 33.

Since the algebraical sum of the resolved parts of the forces in any
direction is zero, those in the directions AB and CD must be zero.

.-. ^'sin^'-r8in^ = (i),

Tcos^ + T'cos^'-irsino^O (ii).

jR occurs in neither equation, because its direction is perpendicular

to all lines in the inclined plane, and W does not occur in the first,

because its direction is perpendicular to AB. The inclination of CD to

the vertical is the same as that of the plane, and is therefore ^
-

a, so
At

that the resolved part of W along CD is - IF sin a.

From
(i)

and (ii) we obtain

R can be obtained by equating to zero the sum of the resolved parts

in the direction perpendicular to the plane, we have then

E-TFcosa= 0,

or R=W cos a.

The advantages derived from resolving in the particular directions

chosen above, are obvious.

Ex. 12. Two equal particles are connected by a fine string, the par-

ticles and string being in a fine smooth elliptic tube, whose semi-cir-

cumference is equal to the length of the string. The particles are

acted on by constant repulsive forces from one focus : prove that, if these

forces are equal, the particles will be in equilibrium in any position in

which the string is tight, and if they are unequal, in only one such

position.

In this example we shall assume what will be proved hereafter (Art.

81), that the tension of a string, in equilibrium under the action of forces

at each end and the pressures of a smooth surface, is everywhere the

same : the force at each end must of course be equal to the tension.

Let S be the focus from which the repulsive forces act
; P, P' the

positions of the j)article8 when the string is tight ;
PP' is therefore a dia-
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meter of the ellipse. Join P, P' with the foci S, II. SPHP' is obviously

a parallelogram.

Fig.30.

Let F, F' be the repulsive force on P, P' respectively : let the string

lie along the semi-circumference PAP', and let it be fixed at A. Each

particle is now in equilibrium : let T be the tension of AP, and T' that

of AP'.

The forces acting on the particle P are F along SP, T along the

tangent at P, and the action of the tube along the normal at P, since

the tube is smooth (Art. 43).

Since P is in equilibrium, resolving along the tangent at P, we have

(Art. 33) F ^in SPG -T^O.

Similarly F' sin SP'G' -T'= 0,

or F' sin SPG -T'= 0,

.'. if F=F', T=T', i.e. it is not necessary to suppose the string fixed at

A to insure equilibrium, as (Art. 43) the tension of the string wdll adapt

itself to preserve equilibrium, if possible.

If, however, F and F' are unequal, T and T' will be unequal also,

unless sin SPG vanishes, i. e. unless the j)articles are situate at A and A'.

But the tension of P^-1 cannot be different from that oi P'A, unless

the string is fixed at ^, so that there is not equilibrium generally, when

F and F' are unequal, and the string is free to move along the tube.

G.
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Examples on Chapter I.

1. ABC is a triangle : D, E,F are the middle points of the sides BC,

CA, AB respectively: shew that forces acting on a particle and represented

by the straight lines AD, BE, CF will maintain equilibrium.

2. A, B, C are three points on the circumference of a cu'cle: forces

act along AB and BC inversely proportional to these straight lines in

magnitude; shew that their resultant acts along the tangent at B.

3. Two forces P and Q have a resultant R which makes an angle a

with P: if P be increased by R while Q remains unchanged, shew that

the new resultant makes an angle ^ with P.

4. The resultant of two forces P, Q, acting at an angle 6 is equal to

TT

(2m + 1) \/{T?^ + Q^) : when they act at an angle -x-Q, it is equal to

(2w - 1) V(^^ + Q^) : shew that tan B = '^^^ .

5. Compare in terms of the sides of a triangle ABC the forces which

acting from 0, the centre of the inscribed circle, along OA, OB, OC will

balance.

6. Two forces P and P ^2 act on a particle lying on a smooth hori-

zontal plane. If P makes an angle of 45^ with the horizon, find the

direction of P ^2 in order that the particle may be in equilibrium.

7. Find a point within a quadrilateral, such, that if it be acted on by
forces represented by the lines joining it to the angular points of the

quadrilateral, it will be in equilibrium.

8. ABC is a, triangle, P any point in BC. If PQ represent the

resultant of the forces represented by AP, PB, PC, the locus of Q is a

straight line parallel to BC.

9. A heavy particle is attached to one end of a string, the other end

of which is fixed. Find the force making an angle of SO** with the hori-

zontal which must be applied to the particle in order that the string may
deviate by an angle of 45^ from the vertical, and find also the tension of

the string.
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10. Two forces P, Q act at a point along two straight lines making
an angle a with each other, and have a resultant II : two other forces

P', Q' acting along the same two lines have a resultant R' ; shew that the

directions of R and R' will also include an angle a if

FP' + QQ' + 2PQ' cos a= 0, or PP' + QQ' + 2P'Q cos a =^0.

11. If from 0, the centre of the circle inscribed in the triangle ABC,
A B

forces X cos
-^ ,

Xcos ^ act along OB, OA, prove that the magnitude of the

necessary force towards C, in order that the resultant may pass through
(J

the middle point of AB, is X cot — .

12. A small ring slides on a smooth arc of a circle and rests in equi-

librium under the repulsion of three forces P, Q, R, directed from points

dividing the circumference in three equal parts : if its position of equili-

brium lie on the smaller arc between the points from which the forces Q,

R are directed, shew that the pressure exerted by the circle is

{P2 + (32 + i^2 -QR +RP + PQ] K

13. Two particles of weights P and Q respectively, are connected by
a string which Hes on a smooth circle fixed in a vertical plane : shew that

IT
if — be the angle subtended at the centre by the string, the inclination of

the chord joining P, Q to the horizontal in the position of equiUbrium is

14. OA, OB, OC... are any number of fixed straight lines drawn from

a point 0, and spheres are desciibed on OA, OB, OC... as diameters. Any
straight line OA' is drawn thi'ough O and a point P taken on it so that

OP is equal to the algebraical sum of the lengths intercepted on OX by
the spheres. Find the locus of P.

15. Two constant equal forces act at the centre of an ellipse parallel

to the directions SP and PH, where S and H are the foci and P is any

point on the curve. Shew that the extremity of the line which represents

their resultant hes on a circle.

IG. Forces are represented by the perpendiculars from the angles of

a triangle ABC on the opposite sides: shew that if theu' resultant passes

through the centre of the nine-point circle

a2 {b^
-

c-i) -f ¥ {c^
-

a^) -f c- (a-*
-
¥) = 0.

4—2
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17. Three equal forces act at the orthocentre of a triangle ABC,
each perpendicular to the opposite side : prove that if the magnitude of

each force be represented by the radius of the circle ABC, the magnitude
of the resultant will be represented by the distance between the centres of

the inscribed and circumscribed circles.

18. The resultant R of any number of forces Pj, P^, F.^,
&c. is deter-

mined in magnitude by the equation

J^^ = 2 (P^) + 2SP^P, cos (P^.PJ,

where (PrPg) denotes the angles between the directions of P^, P^.

19. ABCDEF is a regular hexagon, and at A forces act represented

in magnitude and direction by AB, 2AC, SAD, 4:AE, 5AF; shew that the

length of the line representing their resultant is ^JS51 . AB.

20. Two small smooth rings of weights W and W, connected by a

string, slide upon two fixed wires, the former of which is vertical, and the

other inclined at an angle a to the horizon. A weight P is tied to the

string, prove that in the position of equilibrium

cot e : cot : cot a= W : P+W : P+ W'+ W,

where 6, (p are the angles which the two portions of the string make with

the vertical.

21. ABCD, A'B'C'D' are two parallelograms; prove that forces acting

at a point proportional to and in the same direction as AA', B'B, CC,

I)'D, will be in equilibrium.

22. A particle is acted upon by a number of centres of force, some of

which attract and some repel, the force being in all cases proportional to

the distance, and the intensities for different centres being different : shew

that the resultant force passes through a fixed point for all positions of

the particle, and examine the one apparent exception.

23. From any point within a regular polygon perpendiculars are

drawn on all the sides : shew that the direction of the resultant of all the

forces represented by these perpendiculars passes through the centre of

the polygon, and find its magnitude.

24. Two heavy rings slide on a wire in the shape of an ellipse

whose major axis is vertical, and are connected by a string which passes
over a smooth peg at the upper focus : shew that if the weights are equal

and the length of the string is equal to that of the axis major, there are

an infinite number of positions of equilibrium.
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25. Four particles A, B, C, D are attached to the ends of strings

whose other ends are tied in a knot at 0. Any two particles repel one

another with a force which varies directly as the distance and the product
of their masses. Shew that when the system is in equilibrium, the

volumes of the tetrahedra OBCD, OCDA, ODAB, OABC are proportional

to the masses of ^, Z>, C, D respectively.

26. In an ellipse a polygon PQHS, &g. is described so that the

triangles formed with a side as base and the centre of the ellipse as

vertex are of equal area. If O be any point in the plane of the ellipse,

prove that the line of action of the resultant of the forces represented by

OF, OQ, OR, &c. passes through the centre of the ellipse.

27. Two small heavy rings slide on a smooth wire, in the shape of a

parabola, w'hose axis is horizontal: they are connected by a light string

which passes over a smooth peg at the focus : shew that in the position

of equilibrium, their depihs below the axis are proportional to their

weights.

28. Forces P, Q, R act in the lines DA, DB, DC and their resultant

meets the plane ABC in G, shew that

ju
 m> '

-m.
 ^'""'  ^^«-^  ^-^^^^

If their resultant be parallel to the plane ABC, then

P . DB . DC -\- Q . DC . DA + R . DA . DB ^0.

29. is any point on the circle circumscribing a tiiangle ABC, and

OL, 031, ON are the perijendiculars from on the sides. The line

LMN meets the perpendiculars from A, B, C on the opposite sides in

P, Q, R respectively. Prove that if forces act at O represented by OL,

OM, ON, OP, OQ, OR their resultant is represented by BOK, where K is

the orthocentre.

30. ABC is a triangle and O^O.^O.^ are the centres of the three

escribed circles opposite to ^, B, G respectively. At any point P,

forces act along PO^^, PO.^, PO.^ represented in magnitude by PO^.BC,
POo-CA, PO^.AB, respectively. Shew that if their resultant is of

constant magnitude, the locus of P is a circle concentric with the circle

circumscribing the triangle Oj^O.^O^^.



CHAPTER 11.

STATICS OF SYSTEMS OF PARTICLES.

44. When a body composed of a number of particles
is in equilibrium, each of these particles is in equilibrium
also, and the forces which act on it must therefore satisfy
the conditions of equilibrium. But among the forces

acting on a particle must be included, not only what are

called
'

external
'

forces, such as the force of gravity, the

pressure and tensions due to other bodies, but also 'in-

ternal
'

forces, i. e. the forces of attraction and repulsion
that exist among the different particles composing the

body. These forces are by no means always the same in

the same body: for example, it is plain that if we try
to stretch a rod, the forces that the different particles

composing the rod, exert one on another, are different

from what they are when we try to compress it. In the

former case, the external forces tend to separate particles

arranged along a line parallel to the rod's length, in the

latter they tend to move them nearer together. To
resist these quite opposite tendencies, different internal

forces must be called into play. Concerning these in-

ternal forces we have Newton's Third Law which asserts

that *

action and reaction are ahuays equal and opposite
'

:

i.e., if the particle A exerts on the particle B a force R,
(the action) in a certain direction, it is itself acted on by
a force R, (the reaction) in the exactly opposite direction,

and also in the same straight line, so that the line of
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action of each of these forces must be the line joining A
and B.

45. Without any further assumption about the in-

ternal forces that are exerted when any body is in equili-

brium, we can determine conditions which must be satisfied

by the external forces in such a case.

Since the algebraical sum of the resolved parts in any
direction of the forces, which act on each particle of a

body in equilibrium, is zero, that of the resolved parts
in any direction of all the forces, external and internal,

acting on all the particles, is zero also. But as the re-

solved part of any action is numerically equal, but of

opposite sign, to that of the corresponding reaction, the

algebraical sum of the resolved parts in any direction of

all the internal forces vanishes separately, for the internal

forces consist entirely of pairs of forces, equal and opposite
to one another. Hence the algebraical sum of the re-

solved parts of the remaining forces, the external ones, is

zero.

Cor. A system of forces keeping a number of particles
in equilibrium will, if applied to a single particle, keep it

in equilibrium, since the conditions of Art. 33 are

satisfied.

46. In a similar w^ay we can shew that the alge-
braical sum of the moments about any line, of the external

forces acting on a body in equilibrium, is zero. We have

only to substitute ^moments about any line' fov
^

resolved

parts in any direction
'

and the above proof holds.

We may state then, that if any body be in eq^uilibrium
under the action of external and internal forces, the alge-
braical sums both of the resolved parts in any direction,

and of the moments about any line, of the external forces,

are zero.

If the lines of action of the external forces be in one

plane, the algebraical sum of their moments about any
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l^oint in that plane is zero, being equal to the algebraical
sum of their moments about a line through the point in

question, and perpendicular to the plane.

47. It is to be noticed that what we have called

internal forces are only so relatively
—the force which is ex-

erted on the particle A by the particle B is an internal

one, when we are considering a body or system of bodies con-

taining both particles, whereas if B is not contained in

the system, the force is an external one. It is then very
necessary, in applying the above conditions of equilibrium
to a system of particles, to know which forces are external

and which internal. The force which is an internal one
when we are considering the whole body may become an
external one, when only a portion of the body is under
consideration.

Ex. 1. A jjicture weighing 10 lbs. is supported by a string which

passes over a smooth peg, and has its two ends fastened to the picture :

if the pension of the string be 10 lbs. , shew that each string makes an

angle of GC with the vertical.

Apply Art. 45, choosing the vertical and horizontal as the directions

along which to resolve.

Ex. 2. A rod is supported by means of two strings which are

attached to a fixed point, and one to each end of the rod. Assuming
that the weight of the rod acts at its middle point, prove that the

tensions of the strings are proportional to their lengths.

Apply Art. 46, taking moments about the middle point of the rod.

Ex. 3. A rod of weight W, is supported at an angle of 60** with the

horizon by means of strings attached to its ends, the one attached to

the upper end maldng an angle of 60** with the horizon, but in an opposite

direction to the rod : find the tensions of the two strings and the inclina-

tion of the second to the horizon, assuming that the weight of the rod

acts at its middle point.

Alls, --f—i 'St^ ^f'. the latter acting at an angle tan~^3Ay3, to the

horizon.

Apply Arts. 45, 46, choosing an end of the rod as the point about

which to take moments, and the horizontal and vertical as the directions

in which to resolve.
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Ex. 4. A square ABCD, is in equilibrium under the action of four

forces, one of 3 lbs. acting along AB, one of 2 lbs. along BC, and one of

3 lbs. along CD ;
find the magnitude and line of action of the remaining

force.

Ans. A force of 2 lbs., acting in direction CB, at a distance equal to

BI2.AB from BC.

Apply Arts. 45, 46, resolving along AB, BC respective!}', and taking

moments about B.

Ex. 5. AB is a straight weightless rod, 15 feet long ;
4 lbs. is hung at

A, lib. at a jDoint 3 feet from A, and a force of 11 lbs. acts vertically

upwards at a jooint 8 feet from B ; find what weight must be attached to

the rod to maintain equilibrium and where.

Ans. Gibs., 2 ft. 8 inches from B.

Ex. 6. Three forces acting at the corners of a triangle, each per-

pendicular to the ojDposite side, keep the tiiangle in equilibrium : prove

that each force is proportional to the side to which it is perpendicular.

Take moments about two of the angular points.

Ex. 7. If three forces P, Q, li, acting along the bisectors of the

angles of a triangle, at the angular points A, B, C, respectively, keep the

triangle in equilibrium : prove that

P : Q : R = cos -
: cos— : cos— .

2 2 2

Take moments about two of the angular points.

48. We have then found necessary conditions of

equilibrium for any body or system of bodies whatsoever,

inckiding liquids, flexible strings, &c.

We shall hereafter find sufficient conditions of equili-
brium for

^

rigicV bodies.

Def. When the particles which compose a body,

always form the same configuration, or in other words,

when the body always retains the same shape and size,

whatever forces be applied to it, the body is said to be

rigid.

We have no experience of bodies, which answer this

description perfectly, but we know of many substances
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which answer it more or less approximately : i.e. we know
of many substances, which will submit to the action of

considerable forces without undergoing any appreciable

change in shape or size. The results which we shall prove

absolutely true for perfectly rigid bodies, will be so approxi-

mately for bodies that are approximately rigid.

49. We have already seen that any system of forces

acting on a particle is equivalent to a single force, i.e.

there is a single force, such that its effect on the particle
could not be distinguished from that of the combined
forces. The question now presents itself, whether this is

so or not when the forces do not all act on a single particle,
but on different particles of a system. If the particles form
a rigid body, we shall see that under certain circumstances

there exists a force, which together with the given forces

would keep the body in equilibrium, so that the effect of

this force reversed on the body as a whole, is the same as

that of the original forces. But it must be remembered
that it is only on the body as a ivhole that the effects are the

same necessarily : the internal forces called into play by the

single force, are not necessarily the same as those called

into play by the system of forces, in fact are generally very
different. When we cannot find a single force whose effect

on the body as a whole is the same as that of the system of

forces, we can always find a different sj^stem of forces whose
effect will be the same, though they will not generally give
rise to the same internal forces. It is usual to speak of

the single force, when such a one exists, as the resultant of

the original forces, and the second set of forces as equiva-
lent to the first, though it must always be understood that

they are so, strictly speaking, only in one sense. Even
when the body is not rigid, a single force, or set of forces,

which would, if the body were rigid, be equivalent in the

above sense is said to be, one the resultant of, the other

equivalent to, the original system of forces.

50. Prop. Any rigid body, under the action of any
system of forces, can be fixed by applying single forces at
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each of any three given points of the body not in the same

straight line, the direction of the force at one point being
at right angles to the plane containing the three points,
and that of the force at a second point at right angles to

the line joining it to the third.

Let A, B, and G be any three points of the body.
The body can be fixed by the following constraints :

imagine a very small spherical socket to be made in the

body at A, and a ball just smaller than the socket to be

placed in it, and the ball to be fixed. Now imagine a very
small hoop with its plane perpendicular to AB, to be fixed

round J5, and also some obstacle to be placed to prevent
C from moving at right angles to the plane ABC. The
first constraint prevents the body from moving in any
way except by turning about A, and exerts a single force

through A as the ball and socket touch in only one point :

the second prevents B from turning about A, and there-

fore from moving at all, so that the body can now only turn
about AB; the second force acts at ri^ht ang^les to AB.
The third constraint prevents G from moving round AB,
and therefore from moving at all, and exerts a single force

through G at right angles to the plane ABC. As G cannot
turn about AB, it is clear that the body is now fixed.

51. This proposition can be extended to the case in

which any or all of the points A, B, and G are not situate

in the body. For we may imagine them made so in effect,

without introducing any forces external to the whole sys-
tem, by arranging a system of rigid rods, without weight,
rigidly connecting them with the body.

Co7\ If the lines of action of the external forces all

lie in one plane, the body can be fixed by the application
of single forces at any two given points A, B in that plane,
each force being in the plane, and the direction of one

being at right angles to the line AB.
For by the last proposition, if a third point C be taken

in the plane but not in AB, the body can be fixed by the

application of suitable forces P, Q, R at A, B, C respec-
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tively, tlie direction of B being perpendicular to the plane,
and that of Q perpendicular to AB. The body is now in

equilibrium under the action of the internal forces, the

original external forces, and the forces of constraint P, Q,

a. Hence the algebraical sum of the moments about AB
of all the external forces, including P, Q, and R, is zero :

but each of these momeuts except that of P is zero, since

each of the corresponding forces either intersects AB or is

parallel to it, Art. (46). The moment of P must there-

fore be zero, i.e. P itself is zero, since P neither meets AB
nor is parallel to it. Similarly we may shew that the

moment of Q about every line through A in the plane is

zero, i.e. Q is either zero, or it lies in the plane in question.
Also by taking moments about lines through B in the

plane, except AB, we may shew that either Pis zero, or it

lies in the plane.

52. Prop. A number of forces acting on a rigid body,
their lines of action all being in the same plane, will keep
it in equilibrium, provided any of the following sets of con-

ditions hold : (1) if the algebraical sum of their moments
about each of three given points in the plane, but not in the

same straight line, be zero
; (2) if the algebraical sum of

their moments about one given point in the plane, and of

their resolved parts in any two given directions in the

plane, be zero
; (3) if the algebraical sum of their moments

about two given points in the plane, and of their resolved

parts in any given direction in the plane, not at right

angles to the line joining the two points, be zero.

(1) Let A, B, (7 be the three given points : if the

body is not in equilibrium, it can be fixed by applying
forces of constraint P and Q Sit A and B respectively,
both in the plane of the forces and ^perpendicular to AB.
The whole system of forces including P and Q must satisfy

the necessary conditions of equilibrium : therefore the alge-
braical sum of their moments about A is zero : but the

algebraical sum of the moments of the original forces

about A is zero, and the moment of P about A is zero
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also
;
hence the moment of the remaining force Q is zero,

i.e. Q itself is zero, as it does not pass through A. Simi-

larly we can shew that the moments of P about both B
and C are zero

;
hence either P is zero, or it passes through

both B and G. As ^4, B, and C are not in a straight line,

Pis zero. Hence the body is in equilibrium without any
constraint.

(2) Let J. be the given point, and B any other point
in the plane of the forces : apply forces of constraint P
and Q at A and B respective!}' as in (1). Then we shew
as before that Q is zero. The forces including P must

satisfy the necessary conditions of equilibrium : therefore

the algebraical sum of their resolved parts in each of the

two given directions is zero
;
but the algebraical sum of

the resolved parts of the forces excluding P, in each of

these two directions is zero, i.e. the resolved part of P in

each of these directions is zero. But as the resolved part
of a force is only zero, in a direction perpendicular to the

force, P itself must be zero.

Hence the body is in equilibrium without constraint.

Case (3) can be proved in a similar way.

53. Prop. Two equal forces acting in opposite direc-

tions along the same straight line on a rigid body, but not

necessarily on the same particle, keep it in equilibrium.

This is obvious as the two forces clearly satisf}'- the

sufficient conditions of ecpiilibrium given in the last

article.

This proposition is essentially the same as the prin-

ciple known as the transviissibility of force, which is

generally assumed as an experimental fact, but which we

prefer to deduce as above from the Laws of Motion. The
formal statement of that principle is as follows : luhen a

force acts on a rigid body, it is indifferent on luhat particle
in the line of action it acts, provided that particle is part
of the body, or rigidly connected tuith it. This follows

directly from the proposition just proved. For let A, B
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be any two particles in the line of action of the force, and

rigidly connected with the body. We have just proved
that a force equal and opposite to the given force, would
counterbalance it, so long as the former acted at a point
in AB rigidly connected with the body : hence the given
force counteracts a certain other force, whether the given
force acts at A or at B. As regards its effect on the

body as a whole, we may say then, that it is indifferent

at which point we apply the force. It is however in this

sense only, that it is indifferent
;

if we take into con-

sideration the internal forces brought into play in the
two cases, they will probably be very different.

Imagine, for instance, a sphere resting on a smooth horizontal plane;

a force of a certain magnitude, and in a certain direction will give the

sjDhere the same change of motion, whether the force take the shape of

a push behind or a pull in front, yet the internal forces in the sphere

will be different in the two eases, as in the first case the tendency of the

external force is to compress the sphere, whereas it has the opposite

tendency in the second case.

The proof of the converse principle, viz. that if it is

indifferent at which of two points a force is applied, the

line of action of the force must be the line joining them,
is obvious from what has gone before.

Ex. 1. A square lamina ABCD is acted upon by a force of 3 lbs.

along AB, 2 lbs. along CB, 1 lb. along CD, 2 lbs. along AD, V^lbs.

along CA, and Ay2 lbs. along BD : prove that it is in equilibrium.

Ex. 2. A weightless rod AB, 10 feet long, has weights of 7 lbs. hung
at each end, and one of 11 lbs. at its middle point : a string is attached to

a point 2 feet from A and after passing over a smooth peg vertically

above the point of the rod to which it is attached, supports a weight of

10 lbs, : another string attached to a point 4 feet from B supports in a

similar way a weight of 15 lbs. Prove that the rod is in equilibrium.

Ex. 3. A rigid rod AB, 20 inches long, is acted upon by the follow-

ing forces: 3 lbs. at A along BA, ^73 lbs. at right angles to AB, at a

point 5 inches from A, 6 lbs. at a point 5 inches from B, and making an

angle of GO'' with the part of the rod on the same side as A, and 4 ^73 lbs.
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at B making an angle of 30" with AB produced. Prove that there will

be equilibrium, provided all the forces are in one plane, and the 3rd force

acts on the opposite side of the rod to the 2nd and 4th.

Ex, 4. ABCDEF is a regular hexagonal lamina : prove that it is

kept in equilibrium by the following seven forces : 2 lbs. along AB, CD,

DE, FA, and AD, 3 lbs. along CB and 1 lb. along FE.

54.* Prop. A rigid body under the action of any
system offerees, is in equilibrium, provided the algebraical
sum of their moments about each edge of any given
tetrahedron be zero.

Let ABCD be the given tetrahedron, such that the

D

I \
* N

-— ;
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A'-

B
Fig.3l

algebraical sum of the moments of the forces about each

edge is zero. If the body is not in equilibrium under the
action of the system of forces in question, it can be fixed

(Arts. 50, 51) by applying suitable forces of constraint F,

Q, B a.t A, B, and G respectively. Also Q may be taken

perpendicular to AB, and R perpendicular to the plane
ABC.

Since the bod37- is in equilibrium, under the action of

the original forces, together with P, Q, B, these forces

must satisfy the necessary conditions of equilibrium. There-
fore the algebraical sum of their moments about AB is

zero
;
but the algebraical sum of the moments of the

original forces alone about AB is zero, and the moments
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of both P and Q about AB are clearly zero, so that the
moment of the remaining force R must be zero. R being
perpendicular to the plane ABC, can neither intersect^5
nor be parallel to it, so that its moment about AB can

only vanish by R itself vanishing (Art. 38).

Similarly by taking moments about AC and AD, we
see that the moment of Q about each of these lines is

zero: hence Q must either be zero, or its line of action

must lie in each of the planes BAC, BAD, i.e. be the

line AB; the latter alternative is out of the question,
because Q is perpendicular to AB : Q must therefore be
zero.

Again, by taking moments about BC, DB^ and DC,
\NQ obtain that the moment of P about each of these

lines is zero, i.e. that if P is not zero, its line of action

lies in each of the planes BAC, BAD, DAC, which is

impossible. P must therefore be zero. All the forces of

constraint being zero, we see that the body is in equili-
brium under the action of the original forces only.

55.* Pqv]). a rigid body under the action of any
system of forces is in equilibrium, provided the algebraical
sum of their moments about each of any three given

straight lines intersecting in a point, but not in one plane,
be zero, and the algebraical sum of their resolved parts
alonsr each of these lines be zero also.

Let OA, OB, OC he the straight lines, such that the

algebraical sum of the moments of the forces, about each

of them is zero, and that of their resolved parts along
each is zero also.

As in the last proposition, if the body is not in equi-

librium, it may be fixed by applying suitable forces of

constraint P, Q, R at 0, A and B respectively; R may
be taken perpendicular to the plane OAB, and Q perpen-
dicular to the line OA. Then as before, by taking moments
about OA ,

R is found to be zero
;
and Q also by taking

moments about OB and OC. But the algebraical sum of
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the resolved parts of the original forces together with P,

along each of the lines OA, OB, 00 must be zero; hence

the resolved part of P along each of these lines must also

be zero, i.e. if P is not zero, it is perpendicular to each
of the lines OA, OB, OC, which is impossible as they do
not lie in one plane. P must therefore be zero. The

body is therefore in equilibrium under the action of the

original forces alone.

The sufficient conditions of equilibrium of any system
of forces acting on a rigid body can be expressed in many
ways, other than the two given above.

56. We have seen that if two systems of forces are

equivalent, either of them reversed will counteract the

other; hence it is sufficient for equivalence when both

systems are in the same plane, if any one of the following
sets of conditions holds. (1) If the algebraical sum of the

moments about each of three points in the plane but not
in the same straight line, of one system, be equal respec-

tively to the corresponding sum of the other. (2) If the

algebraical sums of the moments about one point in the

plane, and of the resolved parts in two directions in it, of

one system be equal respectively to the corresponding
sums of the other. (3) If the algebraical sums of the

G. 5
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moments about each of two points in the plane, and of

the resolved parts in one direction in the plane, not

perpendicular to the line joining the two points, of one

system, be equal respectively to the corresponding sums
of the other.

Analogous conditions of equivalence can be obtained

from Arts. 54, 55, for systems of forces which are not in

one plane.

57. To find the resultant action on a body of a weightless string

stretched round it.

Let PABCDQ be a string stretched over a body, A and D being the

points where the string leaves the body. The forces acting on the part

ABCD of the string are the force due to the part PA, or the tension at A

along AP, the tension at D along DQ, and the innumerable actions of

the body at every point of ABCD. Since this portion of the string is in

equilibrium, the two tensions counteract all these actions along ABCD,
i. e. they just balance the resultant of all these actions. But by Newton's

Third Law, the resultant action of the string on the body is equal to,

opposite to, and in the same straight line as, that of the body on the

string. The two tensions counteract the latter of these resultants, i.e.

they are equivalent to the former. We may therefore, in considering the

equilibrium of the body, suppose that it is acted on directly by the ten-

sions at A and B, instead of supposing, what is really the case, that

these tensions act on the string ABCD, and so cause it to exert on the

body the innumerable small forces, to which the tensions are equivalent.
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We arrive at the same conclusion by regarding the body and the por-

tion ABCI) of the string as one system of particles: in that case the

tensions at A and B are forces external to the system, while the innu-

merable actions and reactions between the string and the body are

internal forces.

Ex. 1. A smooth pulley is supported by a string which passes under-

neath it: find the weight of the pulley, if the tension of the string is

10 lbs. and the two parts not in contact with the pulley make angles of

30*' with the vertical. Ans. 10/^3^ lbs.

Ex. 2. A rope is passed several times round a fixed rough post, the

tensions exerted at the ends of the two parts of the rope not in contact

with the post, are 3 lbs. and 2 ^2 lbs. respectively, and these two parts

make an angle of Ao^ with one another. Find the resultant action of

the rope on the post. Ans. ^yiiy lbs.

Ex. 3. A circular cylinder {W) is placed with its axis horizontal on

a smooth inclined plane : a weightless string is attached to a point in the

plane and after passing over the cylinder supports a weight P, the

straight portions of the string being respectively horizontal and vertical :

shew that if there is equilibrium, the inclination of the jjlane to the

horizon is

tan-i {P/(P-MF)}.

58. We have seen how to obtain the resultant of two
forces acting on the same particle; if now we have two
forces acting on a rigid body, but not on the same particle,
we can find a single force equivalent to them provided
their lines of action either meet or are parallel, except in

the case in which the forces are equal and opposite, but

not in the same straight line. If their lines of action

meet in a point, we may by the principle of the trans-

missibility of force, suppose each force to act at this point,
and then their resultant is just w^hat it would be if the

forces really acted on a particle, situate there and rigidly
connected with the body.

59. When the forces are parallel, their resultant is a

force in the same plane, whose resolved part in each of

two directions in that plane equals the algebraical sum

5—2



68 STATICS.

of the resolved parts of the two forces in the same direc-

tion, and whose moment about some point in the plane
equals the algebraical sum of the moments of the two
about that point.

Let A, B he two points where two parallel forces, P,
Q respectively act. Then the first two conditions are

B

F/g.34

satisfied, provided this force acts in the same direction as

P and Q, and is equal to their algebraical sum. It must
then be parallel to the other two, and at such distances

from them that their moments about any point in it are

equal in magnitude but opposite in sign. It must then
be between them if the signs of P and Q are the same,
but not otherwise : its distances from them must be in-

versely proportional to their magnitudes. Hence if C be
the point where its line of action meets AB, B.AC
= Q.BG. When P and Q act in opposite directions, the

greater force will clearly lie between the less and the

resultant.

Cor. The position of C is independent of the direction

of the forces, so long as they remain parallel.

If the forces P and Q are equal in magnitude and

opposite in sign, the preceding solution fails, and we can
find no single force, whose effect is equal to that of the

two together. Two such forces constitute a couple.
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Ex. 1. Four forces, P, 2P, 3P, and 4P act along the sides taken in

order of a square : find their resultant,

Ans. 2P fj2, acting parallel to the diagonal joining the corner where

2P, and 3P, meet with the opposite corner, and at a distance from it f ^2
times a side of the square.

Ex. 2. A uniform beam 4 ft. long is supported in a horizontal

position by two props which are 3 feet apart, so that the beam projects

one foot beyond one of the props : shew that the pressure on one prop is

double the pressure on the other.

Ex. 3. If a bicycle and its rider weigh 60 lbs. and 10 stone respec-

tively, find how the pressure on the ground is divided between the two

wheels, whose points of contact with the ground are 3 ft. 6 inches apart,

while the points through which the weights of the bicycle and rider act,

are distant horizontally 7 in. and 6 in. respectively from the centre of the

driving wheel. Ans. 170 lbs. and 30 lbs,

GO. Since a rigid body under the action of any system
of coplanar forces, can be fixed by two forces of constraint

acting in that plane at two arbitrarily chosen points in it,

the system must be equivalent to the forces of constraint

reversed : but two forces in one plane can be replaced by
a single one, unless they form a couple. Hence any
system of forces in one plane is equivalent to a single
force or a couple.

61. Prop. If three forces maintain equilibrium, their

lines of action must be in one plane, and either all meet
in one point or be all parallel.

Let P, ft R be the three forces, Aa, Bh, Cc, their

respective lines of action.

Since the algebraical sum of the moments of a system
of forces in equilibrium about any line is zero, that of the

moments of F, Q, R about AB vanishes: but as P and Q
both intersect this line, each of their moments about it is

zero, hence that of R about it must also be zero, i.e. Cc

meets AB or is parallel to it. Similarly we can shew that

Cc meets, or is parallel to, each of the lines obtained by
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joining any point in Aa, with any point in Bb, which is

impossible unless Aa, Bb lie in one plane. Hence all

three forces are in one plane.

\B

Fig.35

If the forces are not all parallel, two of them meet and
can be replaced by a single force, which is counterbalanced

by the third force, and is therefore in the same straight
line with it, i.e. the third force passes through the point
of intersection of the other two.

Cor. Two forces, whose lines of action are not in one

plane, cannot be equivalent to a single force.

62, Def. The moment of a couple is the algebraical
sum of the moments of the two forces which form it,

about any point in their plane.

This moment can easily be shewn to be independent
of the position of the point and to be equal to the product
of either force into the arm, i.e. the perpendicular distance

between the lines of action of the forces.

For let P acting at A, and P acting in the opposite
direction at B, form the couple. Then the algebraical
sum of the moments of the two forces about is
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in Fig. (36), P {Oa + Oh)=P. ah,

Fig.36

in Fig. (37j, P {Oct -Oh) = P. ah,

Al ..Ts_ „

Pig.37

in Fig. (38), P {Oh
-

Oa) = P,ah,

0'-„
•'.'a

12::=:^.

Fig. 38
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where Oa, Oh are the perpendiculars from on the lines

of action of the forces.

If the body on which the couple acted were only free

to turn round 0, the tendency of the couple in all the

above figures is to turn the body in the direction in

which the hands of a watch move
;
the couples are said

therefore to have moments of the same sign, or to be like)

Avere the tendency of one of them to turn the body
in the opposite direction, its moment would be of the

opposite sign, and it w^ould be unlike the other two.

63. Prop. Two like couples of equal moment, in the

same or parallel planes, are equivalent to one another.

(i) When the couples are in the same plane.

In this case the two couples form two systems of forces

in one plane, such that the algebraical sums of their

moments about any point whatsoever in the plane are

the same; therefore the systems are equivalent to one

another (Art. 56).

(ii) When the couples are in parallel planes.

Let Pj, Pg be the two equal forces forming one of the

couples, acting at the points A, B respectively.

In the plane in which the other couple acts, draw CD
equal and parallel to AB. Then the effect of Pj, P^ Avill
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not be altered by introducing at G, P^, P^, two forces in

opposite directions, each equal and parallel to P^, and also

two similar forces P^, P^ at D. Join AD, BC, intersecting
in 0; then bisects both AD and BC.

P3 and Py are equivalent to 2P^ at 0, in the same
direction as Pg and P^ and P^ are equivalent to 2P, at

in the opposite direction to F^\ 2P^ and 2P^ at will

counteract one another, so that we are left with P^ at (J

and Pg at D, as equivalent to the original couple. But
these two forces constitute a couple like to the original
one, equal to it and in the given plane parallel to it:

therefore as the original couple is equal to one couple in

the parallel plane, it is by (i) equal to any like couple of

the same moment in that plane.

64.* The latter part of the last proposition might have
been proved in a manner analogous to that adopted for the

former, as follows.

Let A and B be the two couples : we shall prove that
A and B reversed satisfy the sufficient conditions of equi-
librium of Art. 5o.

Take three straight lines, intersecting in a point, one

perpendicular to the plane of each couple, and the other
two in the plane of B.

It is obvious that the algebraical sum of the resolved

parts of the four forces in each of these directions is zero :

also the moments of A and B reversed, about the line

perpendicular to their planes, are numerically equal but of

opposite sign. Hence the algebraical sum of the moments
of the four forces forming them about this line is zero.

The moment of each of the forces forming B reversed
about any line in their plane is zero, and the moments of

the two forces forming A, about any line in the plane of

B, are equal numerically but of opposite sign ;
the alge-

braical sum of the moments of all four forces about every
straight line in the plane of B is therefore zero.

The six sufficient conditions of equilibrium of Art. 55
are therefore satisfied, and the couples A and B reversed



74 STATICS.

balance one another; in other words A and B are equiva-
lent.

Ex. 1. Like parallel forces, each equal to P, act at three of the

corners of a rhombus, perpendicular to its plane : at the other corner

such a force acts that the four forces are equivalent to a couple: find the

moment of the couple, provided the angle at which the last force acts be

60^. Ans. 2 sjs . Pa, where a is a side of the rhombus.

Ex. 2. ABCDEF is a regular hexagon : equal forces act along AB,
BC, DE, EF, and two other forces, each double any one of the former

forces, act along DC and AF: prove that they maintain equilibrium.

65.* Let us consider what we require to know to

determine the effect of a couple on a rigid body. It is

unnecessary to know the actual position of the plane in

which the couple acts, but we must know the direction of

the plane, i.e. the direction of a line to which it is perpen-
dicular. We do not require to know the magnitude or

direction of the forces which compose the couple, but we
must know the magnitude of its moment and its sign, i.e.

the direction in which it would tend to turn the body round
a line perpendicular to its plane, the line being fixed and
the body rigidly connected with it.

Now a straight line at right angles to the plane of the

couple, and of length proportional to the magnitude of its

moment, will represent the couple in the first two respects :

also, if it be understood that the line is drawn in that

direction in which the axis of a right-handed screw moves,
when it rotates in the same way as the couple tends to

turn the body, the sig7i of the couple will also be re-

presented.

Fig.40
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In fig. 40, if the arrowhead on the circle indicates the direction in

which the couple would tend to turn the body about AB, supposing the

latter fixed and the body rigidly connected with it, the sign of the couple

in accordance with the above convention would be represented by AB and

not by BA.

The line which thus completely represents the couple
is termed the axis of the couple.

66.^ We shall now prove that couples follow the

Par^allelogi^am Law, in other words, that if from a point
the axes representing two couples be drawn, and a parallel-

ogram be constructed on these two axes as adjacent sides,

the diagonal passing through the above-mentioned point is

the axis of a couple equivalent to the two, i.e. their result-

ant couple.

We may suppose the couples to consist of forces

acting at the ends of a common arm, in which case the
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moments of the couples will be respectively proportional to

the forces composing them.

Let Aahe the common arm, and let AB, ah represent
the two equal and parallel forces forming the first couple,

AC, ac those forming the second.

Draw AB' perpendicular to Aa and AB, equal to AB,
and in the direction which by the convention of Art. 65

represents the sign of the first couple : similarly draw AC
perpendicular to Aa and AG^ equal to AG and in the

proper direction. Then AB' and AG' are the axes of the

two couples.

Complete the three parallelograms, ABGD, abed,

AB'G'U, and join AD, ad, AD'. These parallelograms
are clearly equal in every respect, so that AD = ad = AD'.
Also AD, ad are parallel, and AD' is perpendicular to AD.

But the two forces AB, A G are equivalent to AD, and

the two ah, ac to ad, so that the two couples are equivalent
to AD, ad, which form a couple of which AD' is the axis.

Hence the couples whose axes are AB', AG' are equivalent
to a resultant couple of which AD' is the axis.

Cor. Hence we may deduce propositions relating to

the composition and resolution of couples, analogous to

those obtained in Arts. 19—26, 30—32, relating to the

composition and resolution of forces.

67.* Prop. Any system of forces acting on a rigid

body can be reduced to a single force acting at any
arbitrarily chosen point and a couple.

Let A be the arbitrarily chosen point, P any one of

the forces.

Fig.42
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We shall not alter the effect of the forces by applying
at A two forces P^, P^ each equal and parallel to P, and in

opposite directions to one another. P^ which is opposite to

P, forms with P a couple. Hence P is equivalent to P^
at A, and a couple.

The couple vanishes in the case in which A lies in P's

line of action.

Similarly we may replace each of the other forces by a

force at A, equal to it and in the same direction, and a

couple.

The whole system thus reduces to a series of forces at

A, respectively equal to and in the same direction as the

several original forces, and a series of couples. But the

forces at A are equivalent to a single resultant at A, and
the couples to a single resultant couple.

Co7\ The magnitude and direction of the single
resultant is the same wherever A is, and the resultant

couple is the same for all positions of A in a line parallel
to the single resultant force.

68.* Prop. Any system of forces acting on a rigid

body is equivalent to a single force and a couple whose

plane is perpendicular to the direction of the single force.

Hcos4)''

Hsin^

R*

Fig.43

By the last proposition, the system is equivalent to

a single force R acting at any given point A, and a couple
H. If the axis of H make an angle (/>

with the direction

of R, it may be resolved into ^cos
</>

in the direction of R
and //sin ^ at right angles to that direction.
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Draw AB perpendicular both to R and the axis of H,
and make AB equal to (H sin (j))/B, then applying at

B two forces equal and parallel to R, but in opposite
directions to one another, the system is equivalent to B at

B in its original direction, the couples H cos
cf),
H sin

</>,

and the two forces R at A, and B in the opposite direc-

tion at B. But the last two forces are equivalent to a

couple whose axis is at right angles to both B and

AB, i.e. is in the same straight line as the axis of the

couple H^in<^: its moment is R . AB or Hsincj). If

AB be drawn as in fig. 43, the axes of these two couples
are in opposite directions by the convention of Art. 65 :

the two couples therefore counteract one another, and we
are left with R at B and the couple H cos

(p
whose axis is

along R's direction. Such a force and couple together
form what is called a wrench.

R's line of action through B is termed Poinsofs Central

xlOCIS.

The algebraical sum of the moments of the system of

forces about the axis of H through A is H, about a line

through A, making an angle 6 with AH, the sum of their

moments is H cos 6. Hence AH is called the axis of

prmcipal moment at A, as the sum of the moments of the

forces about it is greater than that about any other line

through A.

69.* Prop. The algebraical sum of the moments of

the forces about Poinsot's Central Axis is less than that

about any other axis of principal moment.

For (Art. 68) (fig. 43) the sum of the moments
about the central axis is H cos

<^,
whereas the sum of the

moments about the axis of principal moment at A is H.

For this reason the Central Axis is sometimes termed

the axis of least principal moment.

70.* Prop. Any system of forces acting on a rigid

body can be reduced to two equal forces equally inclined

to the Central Axis.



STATICS OF SYSTEMS OF PARTICLES. 79

For let 00 be the central axis, R being the single

resultant force, and H the moment of the resultant couple
whose axis is OG.

iff

Fig.44

Through draw AOB perpendicular to OG, and make
OA = OB.

We can replace R by jR/2 at A, and i^/2 at B, each

in the same direction as R
;
we can replace the couple H

by a force P dX A, and a force P at B, each perpen-
dicular to the plane GOA, but in opposite directions,

TT

provided P =
-jri*

The resultant of Pand P/2 at A, and that of P and P/2
at P, will clearly be equal to one another and will make

equal angles with P/2, i.e. with the Central Axis.

71. Recapitulation. Regarding any body at rest what-

soever, as a collection of particles each of which is at rest,

we can assert that the algebraical sum of the resolved

parts in an}'' direction, of all the forces, internal as well as

external, acting on the body is zero : also that the alge-
braical sum of their moments about any line is zero. But
as by Newton's Third Law the internal forces consist

entirely of pairs, which are equal, opposite and in the

same straight line as one another, the algebraical sums of

the resolved parts and of the moments of the internal

forces are both zero. Any system of external forces which,

together with internal ones, maintain a body in equili-

brium, must therefore be such that the algebraical sum of

their resolved parts in any direction is zero and that of

their moments about any line is zero also.
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Next, considering rigid bodies only, we shew that a

body under the action of any system of external forces

whatsoever can be fixed by the application of suitable

forces at three arbitrarily chosen points, and that the

direction of one of these forces may be taken perpendicu-
lar to the plane containing the three points, and that of

another perpendicular to the line joining its point of ap-

plication to the third point. When the forces are coplanar,
the body can be fixed by applying suitable forces at any
two points in the plane of the forces, the directions of both

forces being in the plane and that of one perpendicular to
^ the line joining the two points. From this proposition
follow the sufficient conditions of equilibrium of a system
of coplanar forces acting on a rigid body. These conditions

may be given in three different forms, and each form

is expressed algebraically by three equations. When the

forces are not in one plane the sufficient conditions of

equilibrium can be put in many different forms, and each

form requires for its algebraical expression six equations.

Defining two forces as equivalent, when either counter-

acts the other reversed, we deduce the principle known as

the *

Transmissibility of Force.'

The resultant of two parallel forces is obtained by

finding from the sufficient conditions of equilibrium, a

force which will counteract them, and then reversing it.

It is then shewn that if three forces maintain equili-

brium, they must be coplanar and either concurrent or

parallel.

Then we shew that two couples are equivalent when
their moments are equal and their planes coincident

or parallel ;
hence that couples can be represented by

straight lines, and that they can be compounded and

resolved like forces by the Parallelogram Law. It was

shewn that any system of forces in one plane is equiva-
lent to a single force or a couple, it can now be shewn that

any system of forces whatsoever, acting on a rigid body, is



STATICS OF SYSTEMS OF PARTICLES. 81

equivalent to a single force and a couple acting in a plane

perpendicular to the force, or to two equal forces, equally
inclined to the Central Axis.

Illustrative Examples.

Ex. 1. If four forces acting aloug the sides of a (luadrilateral are in

equilibrium, prove that the quadrilateral is a plane one, and also, that if

the quadrilateral can he inscribed in a circle, each force must be propor-
tional to the length of the opposite side.

Let ABCD be the quadrilateral. The forces along AB, BC have a

resultant through B and in the plane ylZ>C; similarly those along AD, DC

Fig.45

have a resultant through D and in the plane ADC. But as the four

forces are in equilibrium, these two resultants must be in the same

straight line, BD, i.e. BD is in each of the planes ABC, ADC and the

quadrilateral is a plane one.

When ABCD can be inscribed in a circle let P, Q, R, S be the forces

along AB, CB, CD, AD, respectively.

Since the forces are in equilibrium, the algebraical sum of their

moments about A is zero :

.'. Q . ABsinB-R . ADsmD = 0;

AD
=
2B

=
'''^'^'''^y^CD BC'

G. G
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Ex. 2. ABCB is a quadrilateral, and two points P, Q are taken in

AB, BG such that AP : PD = CQ : QB. From P, Q, straight lines PP',

QQ' are drawn parallel to, equal to, and in the same directions as BG
and DA respectively. Shew that forces represented by AB, CD, PP',

QQ' are in equilibrium.

Fig.46^~'"-

The force PP' can he replaced hy two forces parallel to it, at A and D :

thefoYcesit A: PP'= PD : AD =BQ : BG;

.•. force at A =BQ ;

similarly, that at D = QC.

The two forces AB, BQ, acting at A, are, by the triangle of forces,

equivalent to ^Q; and the two QC, GD, at D, to QD. Hence the four

original forces are equivalent to AQ, QD, and QQ', all acting through Q,

and represented by the sides of the triangle AQD, taken in order. They

are therefore in equilibrium.

Ex. 3. A system of forces represented by the sides of a plane polygon,

taken in order, is equivalent to a couple, whose moment is represented

by twice the area of the polygon.

Let the forces be represented by the sides AB, BG, GD, DE, EF, FA,

of the polygon ABGDEF.

We know that if the forces are not in equilibrium, they are equivalent

to a single resultant or a couple (Art. 60).
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But as the algebraical sum of their resolved parts in any direction is

F/g.47

zero, their resultant is zero, i.e. they are in equilibrium, if they are not

equivalent to a couple.

Take any jjoint 0, and join OA, OB, OC, &c.: then the moment
of AB about is measured numerically by twice the area of the

triangle OAB, since the area of OAB is equal to ^AB into the perpen-
dicular from on AB: and similarly for the other moments. Hence the

algebraical sum of the moments of AB, BC, &g. about is measured by
twice the area of the polygon, i.e. is not zero. The system then must be

equivalent to a couple, and the moment of this couple is represented by
twice the area of the pol^'gon.

Ex. 4. On the sides of a right-angled triangle ABC squares are

described, the square BCDE on the hypotenuse on the same side oi BC
as A, and the squares CAFG, ABHK on CA, AB on the opposite side of

each to the triangle: prove that the forces represented by the straight

lines AB, BC, CA, BH, HK, KA, CD, BE, EB, AF, EG, GC will form

a system in equilibrium.

Fig.48.

6—2
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The twelve forces are represented, four by the sides taken in order, of

CAFG, four by those of ABHK, and four by those of BCDE.

The algebraical sum of their resolved parts in any direction is zero:

also by the last example the algebraical sum of the moments about any

point, of the first four, is represented by twice the area of CAFG, that of

the second four by twice ABHK, and that of the third four by twice

BCDE. If the sum of the moments of the first four be considered

negative, that of the second four is negative and that of the third four is

positive. Hence, since the area of BCDE is equal to the sum of the

areas of ABHK, CAFG, the algebraical sum of the moments about

any point, of the twelve forces, is zero, i.e. the forces are in equilibrium.

Ex. 5. A uniform rod hangs by two strings of lengths I, V, fastened

to its ends and to two points in the same horizontal line, distant a

apart, the strings crossing one another. Find the position of equilibrium,

and shew that if a, a be the angles that I, V make with the horizontal

sin (a + a') {V cos a' - I cos a)
= a sin (a

-
a').

Let B be the angle which the rod AB makes with the vertical : let be

the point where the strings cross one another. Since the rod is in equi-

librium under the action of three forces, two of wliich, the tensions of

the strings, meet in 0, the third, the weight of the rod, passes through O.

But the weight acts vertically through the middle point of the rod, which
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point G, must tlierefore be in a vertical line with O : hence the perpendi-

culars AM, BN on OG must be equal.

.-. {I- OC) cos a = (r
- OD) cos a.

OC OD a
But -.

,

= — = -.
—

7
—

;

—K Jsm a sm a sm (a + a
)

( ,
a sin a ) \„ a sin a

)

.•.]l- . -7
r cosa= U'-^-—-—,r cosa,

(
sm (a + a)) I sm (a + a

) ^

or sin (a + a) (Z
cos a - r cos a')

= a sin (a'
-

a) (1).

If b be the length of AB, we have since the algebraical sums of the

vertical and horizontal projections of AB, BD, DC, CA are both zero,

I sin a-b sin d -t sin a = 0,

I cos a-b cos 6 -T I' cos a - a — 0'.

These equations with (1) enable us to obtain a, a, and 6, which de-

termine the position of equilibrium.

The above is an example of a geometrico-statical problem, in which

the position of equilibrium, which must clearly exist, is required, and

is obtained from geometrical considerations.

If the weight of the rod be given, the other unkno^\^^ quantities, the

tensions of the strings, can be obtained by using two more conditions of

equilibrium, since there are three, and one only has been used. As there

are five unknown quantities, and only three sufficient conditions of equi-

librium, we must have two geometrical conditions in order to completely

solve the problem.

Ex, 6. A uniform heavy rod of length a is placed across a smooth

horizontal rail and rests with one end against a smooth vertical wall, the

distance of which from the rail is h: shew that the angle the rod makes
1

with the horizon is cos"~i (/'/«) '^.

Let 6 be the inclination of the rod to the horizon, in the position of

equilibrium. The forces acting on the rod AB are its weight vertically

downwards through G, its middle point, the reaction of the wall, hori-

zontally through .4, and that of the rail C, at right angles to AB. These

forces must therefore meet in a point D. Since ADG, ACD are right

angles, AD^=AC . AG,

a^cos- 6= a . h sec d,

.'. COS^^=:-.
a
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Or, we might have proceeded thus : let R be the reaction of the wall,

S that of the peg, and W the weight of the rod. Resolving vertically,

we have JF-^Scos^^O
(1).

Taking moments about A,

S . AC=W, AD,

.-. S . 7i see ^= TF . a cos d

h

(2).

From (1) and (2)

Eesolving horizontally,

cos^ 6 —
a

R-S sin 6=

Hence R and S can be obtained.

(3)

The advantage of resolving vertically and taking moments about A is

that in neither case does the force R come into the corresponding equation .

Ex. 7. Shew that the greatest inclination to the horizon at which a

uniform rod can rest, partly within and partly without a fixed smooth

hemispherical bowl, is sin"^ (l/\/3).

Let ADEC be the circular section of the complete sphere, made by
the vertical plane containing the rod AB, which rests against the edge of

the bowl at C. COD is the horizontal diameter of the sphere through C.

The rod is kept in equilibrium by its, weight through G, its middle

point, the reaction of the bowl at A, along the normal AO, and that at

C perpendicular to AB, and therefore meeting AO on the sphere at E.

Since these three forces pass through one point, GE must be a

vertical line.

Let AGO = 6, r= radius of the bowl.
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Then

since

AC=AE cos EAC=2r cos 8

,^ ,^ sin AEG ^ cos 20AG =AE . --. =r^ , =:2r
sin EGA COS0

AAEG =^-E0F=^-2d.

(1).

(2),

Fig.51.

Since ^G is half the rod, (2) determines the position of equilibrium.

AG
Let m=

in =

AC
cos 20 2cos20-l

cos2 =
;

cos- 6

1

cos2

2-m'

clearly has its greatest value when m has its least value, i.e. when
m= ^, since AG cannot be less than half ^C

Hence the greatest value of 6 is given by

1 2
COS-0:

2-i 3'

or sin 6 — —7^ .

^3
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Ex. 8. Four equal spheres rest in contact at the bottom of a smooth

spherical bowl, their centres being in a horizontal plane. Shew that, if

another equal sphere be placed upon them, the lower spheres will separate

if the radius of the bowl be greater than (2JIS + 1) times the radius of

a sphere.

Let A, B, C, D be the centres of the four spheres respectively, that

of the upper sphere, 0' that of the spherical bowl. Then AB, BC, CD,

Oi

Fig.52

DA, OA, OB, OC, OD are each equal to the diameter (2r) of any one of

the spheres. O and O' are clearly in the vertical line through H, the

intersection of the diagonals of the square ABCD.

1

Then co^OAH=^^ =
,^ABAH J2 1

OA OA

OAH=45^.

jr

When the lower spheres are just on the point of separating, there is

no pressure between any two of them, so that each of them is in equi-

librium under the action of its weight, the pressure of the upper sphere,

and that of the hollow sphere. Let W be the weight of each sphere, E
the reaction between the upper and any of the lower spheres. From the

equilibrium of the upper sphere, resolving vertically,

W~4R

R=
W

2^2*
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The resultant of IF acting vertically, and
W

2^2
along OA, on the sphere

W

whose centre is A, makes with the vertical the angle tan ^
2 x/2 V2

W+ W 1

2 J2
'

J2

i. e. tan~i I.

But this resultant is equal and opposite to the pressure of the bowl

which acts along AO'.

Therefore tan ^O'H^i,
i 1
_o

"^26*OA Ji + 1
^6

.'. 0'A^J'Z6 . AH=2 JlSr.

But the radius of the hollow sphere is equal to O'A together with r,

therefore radius of the bowl = (2 JVS + 1) r.

If the bowl is any larger, 0' will be further from H, and for the

pressure of the bowl to counteract the resultant of the other forces on

the sphere (centre A), we shall have to suppose that the actions of the

two adjacent lower spheres on it are towards their respective centres

instead of away from them. But as the spheres are incapable of exerting

such forces, equilibrium is not possible, i. e. the spheres will separate.

Ex. 9. A heavy har, AB, is suspended by two equal strings of length

I, which are originally parallel : find the couple which must be applied to

the bar to keep it at rest after it has been twisted through an angle 6 in

a horizontal plane.

Let C, D be the fixed ends of the strings; CA', DD' the original

vertical positions of the strings.

Fig. 53
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Draw Aa, Bb at right angles to CA', DB' respectively. Join ab cut-

ting AB in its middle point G. Let 2a be the length of AB, and = angle

aCA or bDB.

Then CA sin aCA = aA^ 2AB sin^^ ,

a

.'. Zsin = 2a sin- (1).

Let T be the tension of either string : they will from symmetry be

the same.

Let P be the magnitude of the force which applied horizontally in

opposite directions at A and i>, at right angles to AB^ will keep the rod

in equilibrium.

Besolving vertically, we have

[r-2rcos</.:=0.

Taking moments about the line of action of W, we have

2P . a-2Tsm(f> . acos-= 0.

aTFsin^ . cos -

Hence 2Pa= (2).cos (p
^

(1) and (2) enable us to determine 2Pa in terms of a, I,
W and 6.

In this example we have assumed as obvious that a couple only is

required to maintain equilibrium: it can be shewn however, that the

values we have obtained for P and T will satisfy the six conditions of

equilibrium of Art. 55.

Examples.

1. Four points A, B, C, D lie on a circle and forces act along the

chords AB, BG, GB, DA, each force being inversely proportional to the

corresponding chord: prove that the resultant passes through common

points of (1) AD, BG
; (2) AB, DC ; (3) tangents at B, D, and (4) tan-

gents at A and G.

2. If six forces acting on a body be completely represented, three by

the sides of a triangle taken in order, and three by the sides of the

triangle formed by joining the middle points of the sides of the original

triangle, prove that they will be in equilibrium if the parallel forces act
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in the same direction, and the scale on which the first three forces

are represented be four times as large as that on which the last three are

represented.

3. Forces P, Q, R act along the sides of a triangle ABC, and their

resultant passes through the centres of the inscribed and circumscribed

circles: prove that

P ^ Q ^ J?

cos B - cos C cos C - cos A cos A - cos B
'

4. Prove that a uniform rod cannot rest entirely within a smooth

hemispherical bowl, except in a horizontal position.

5. If a uniform heavy rod be supported by a string fastened at its

ends, and passing over a smooth peg; prove that it can only rest in

a horizontal or vertical position.

6. A heavy equilateral triangle hung upon a smooth peg by a string,

the ends of which are attached to two of its angular points, rests with one

of its sides vertical
;
shew that the length of the string is double the

altitude of the triangle.

7. A fine string ACBD tied to the end ^ of a uniform rod AB of

weight W, passes through a fixed ring at C, and also through a ring

at the end B of the rod, the free end of the string supporting a weight P;
if the system be in equilibrium prove that AC : BC :: 2F + W : W.

8. A horizontal rod, the ends of which are on two inclined planes, is

in equilibrium: if a, ^ be the inclinations of the planes, prove that

the centre of gravity of the rod divides it into two parts in the ratio

of tan a to tan /3.

9. A uniform heavy rod AB has the end A in contact with a smooth

vertical wall, and one end of a string is fastened to the rod at a point C
such that AC= IAB, and the other end of the string is fastened to the

wall ; find the length of the string if the rod is in equilibrium in a

position inclined ta,the vertical.

10. A cylindrical ruler whose radius is 2a, and length 2h rests on a

horizontal rail with one end pressing against a smooth vertical wall,

to which the rail is parallel. Shew that the angle the axis of the ruler

makes with the vertical is given by [h sin d + a cos 6) sin^ 6 + 2a cos d= b,

where b is the distance of the rail from the wall.

11. Two equal heavy spheres of one inch radius are in equilibrium

within a smooth spherical cup of three inches radius. Shew that the
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pressure between the cup and one of the spheres is double the pressure

between the two spheres.

12. Along each side taken in order of a polygon inscribed in a circle,

acts a force whose magnitude is proportional to the sum of the lengths of

the two adjacent sides: prove that the system of forces is equivalent

to a system of forces acting along the tangents at the corners of the poly-

gon, each such force being proportional to the length of the chord joining

the two adjacent points.

13. ABCD is a quadrilateral: forces act along the sides AB, BC, CD,
DA measured by a, /3, y, 5 times those sides respectively. Shew that if

there is equilibrium ay
—

§5.

Shew also that A ABDjls ABC= a{y- p)l8 {^-a).

14. Into the top of a fixed smooth sphere of radius a is fitted firmly a

fine smooth vertical rod. A bar of length 26 has at one end a ring which

slides on the rod
;
and the bar rests on the sphere. Shew that in equili-

brium the angle (a) the bar makes with the horizontal is given by

asina = &cos^a.

15. Forces P, Q, R act along the sides BG, CA, AB of a triangle ;

shew that their resultant will act along the hne joining the centre of the

circumscribing circle to the intersection of perpendiculars if

cos B cos C cos C cos A cos A cos B
P • O • B •• * •

: .
 ^ ' '*

cosC cos S
*

cos ^ cosC cosi>' cos^

16. A kite (weight P) having a tail (weight Q) is stationary, with a

normal to its face, the direction of the wind, which is horizontal, and the

string in the same vertical plane. The tail is attached at a distance a

below the kite's centre of gravity, the string at a distance h above. Shew

that, neglecting the action of the wind on the tail, the inclination of the

kite to the horizon is given by the equation

W) . sin2 ^ = {P6 + Q . (a + 6)} cos 6,

where IT is the pressure on the kite, when placed perpendicular to the

wind's direction.

17. Forces act at the middle points of the sides of a rigid polygon in

the plane of the polygon ;
the forces act at right angles to the sides, and

are respectively proportional to the sides in magnitude : shew that the

forces will be in equilibrium if they all act inwards or all act outwards.
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18. Shew that it is impossible to arrange six forces along the edges of

a tetrahedron so as to form a system in equilibrium.

19. An uniform rod of weight W is supported in equilibrium by a

string of length 21 attached to its ends and passing over a smooth peg.

If a weight W be now attached to one end of the rod, prove that a

IW
length

——— of the string will slip over the peg.

20. If four parallel forces balance each other, let their lines of action

be intersected by a plane, and let the four points of intersection be joined

by six straight lines so as to form four triangles ;
then prove that each

force is proj)ortional to the area of the triangle whose angles are in

the lines of action of the other three.

21. Two rings of weight P and Q respectively, slide on a string,

whose ends are fastened to the extremities of a straight rod inclined

at an angle 6 to the horizon : on the rod slides a light ring through
which the string passes so that the heavy rings are on different sides of

the light ring. Prove that in the position of equilibrium the inclination

of those parts of the string next the weightless ring, to the rod, is

giyen by the equation tan 0/tan ^ = (P+ Q)/(P~ Q).

22. An elastic string passes round three equal right-circular cylinders

so that when each cylinder touches the other two along a generating

line, the string is just not stretched : shew that if the system be placed

on a smooth horizontal plane, the inclination (6) of the plane con-

taining the axis of the upper cylinder, and that of either of the lower

ones to the horizontal, in the position of equilibrium, is given by the

equation (tt+S) Tr=2\(2cos ^- 1) tan^. (IF is the weight of the upper

cylinder, and X is the modulus of elasticity.)

23. Two equal circular discs, of radius r, with smooth edges are

placed on their fiat sides in the corner between two smooth vertical

planes inclined at an angle 2a and touch each other in the line bisecting

the angle ;
the radius of the least disc w'hich may be pressed between

them without causing them to separate =r (1
-
cosa)/cos a.

24. A rectangular lamina ABCD is supported with its plane vertical

and one edge AB in contact with a smooth vertical wall, by an endless

string which passes through smooth rings, one fixed to the wall at A,

and two others P, Q fixed in the sides AB, CD of the lamina respectively
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so that VQ is parallel to AB. Prove that the string has the least tension

consistent with equilibrium when the position of Q is such that

BGl2AD = ia.ulAQD.

25. Forces act through the angular points of a tetrahedron per-

pendicular to the opposite faces and proportional to them. Prove that

they are in equilibrium if they all act either inwards or outwards.

26. AC, BD are two non-intersecting straight lines of constant

length; prove that the effect of forces rej)resented in every respect by

AB, BC, CD, DA is the same, so long as AC, BD remain j)arallel to the

same plane, and their projections on that plane are inclined at a con-

stant angle to one another.

27. A flat semicircular board wdth its plane vertical and curved edge

upwards rests on a smooth horizontal plane, and is pressed at two given

points of its circumference by two beams w^hich slide in smooth vertical

tubes : find the ratio of the weights of the beams to one another when

the board is in equilibrium.

28. An endless string is placed round two equal cylinders and the

system is suspended from a peg so that the line joining the centres of the

cylinders is horizontal. If the pressure between the cylinders be equal

to twice the weight of either of them
; prove that the length of the

string : the radius of either cylinder : : 4 (2 + tan"^ 2) : 1.

29. A homogeneous circular cylinder rests on two smooth planes

inclined to the horizon at angles a and
/3

in opposite directions, so that

its axis is at right angles to the line of intersection of the planes.

Prove that the inclination 6 of the base to the vertical in the position

of equilibrium is given by

tang= ^s"^(«-/^)
r sin {a + ^)+ 2a sin a sin

/3

'

where r is the radius of the base and 2a the length of the cylinder.

30. In a triangular lamina ABC, AD, BE, CF are the perj)endiculars

on the sides, and forces represented by the lines BD, CD, CE, AE, AF,
BF are applied to the lamina

; prove that their resultant will pass

through the centre of the circle described about the triangle.

31. An elliptic lamina rests against an inclined plane (a) being sup-

ported by a string attached to the extremity of its minor axis, so that

its major axis is vertical and the plane of the ellipse is perpendicular to

the inclined plane. Shew that the inclination of the string to the

vertical is tan~i&^(a--hZ^-tan-a)/(a-- fc-).
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32. A uniform bar of length a rests suspended by two strings of

lengths I and V fastened to the ends of the bar and to two fixed points in

the same horizontal line at a distance c apart. If the directions of the

strings, being produced, meet at right angles, prove that the ratio of

their tensions is al + cV : al' + cL

33. Two weights P, P are attached to the ends of two strings which

pass over the same smooth peg and have their other extremities attached

to the ends of a beam AB, the weight of which is W; shew that the incli-

nation of the beam to the horizon = tan~^
(

=- tan a] ; a, h being the^
(

tan a
)

\a + h J
distances of the centre of gravity of the beam from its ends, and

sina=Tr/2P.

34. A string 9 feet long has one end attachcid to the extremity of a

smooth uniform heavy rod two feet in length, and at the other end carries

a ring which slides upon the rod. The rod is suspended by means of

the string from a smooth peg : prove that if d be the angle which the

rod makes with the horizon, then tan ^^S"-"* _ 3~3.

35. A triangle formed of three smooth rods is fixed horizontally, and

a homogeneous sphere rests on it. Prove that the pressure on each rod is

proportional to its length.

36. A sphere rests on three smooth pegs, which lie in a horizontal

plane, and are at distances a, 6, c from one another, prove that the

pressures on the pegs are in the ratios

a-{h- + c"-a-) : h- {c" + or -
b"-) : c^ {a? + }f'-c'').

37. ABC, A'B'C are two triangles inscribed in the same circle ; and

forces proportional to the sides of the triangle act along them, but in op-

posite dhections round the two triangles. Prove that, if a, /3, y be the

angles subtended at the centre of the circle by the sides of the one

triangle, and a', j3', y' those subtended by the sides of the other, the forces

.,, , . .,., . .„ . a . jS . 7 . a' . ^' . y'
will be in equilibrium if sin - sin \ sm ^ = sin - sm ^ sm — .^

2 2 2 2 2 2

38. A, B, C, D are four points in space: four forces represented by

AB, AD, CB, and CD act along these lines : prove that they have a

single resultant, the line of action of which is perpendicular to the

shortest distance between the lines AB, DC, and also to that between

AD, BC.
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39. Three equal spheres are placed in contact on a smooth hori-

zontal table, and a fourth equal sphere is placed upon them, and then a

cone of semi-vertical angle a is placed over the pile of spheres. Prove

that the cone will he lifted if its weight is less than —p= tan a of the

weight of a sphere.

40. A cylindrical shell, without a bottom, stands on a horizontal

plane, and two smooth spheres are placed within it, whose diameters are

each less whilst their sum is greater than that of tlie interior surface of

the shell : shew that the cylinder will not upset if the ratio of its weight
to the weight of the upper sphere be greater than 2c- a-b : c, where

a, b, c are the radii of the spheres and cylinder.

41. Three spheres of radius c are placed on a smooth horizontal

table so that their points of contact with it are at the angular points

of an equilateral triangle. A fourth sphere of radius a and weight W
touches the table and each of the other spheres. An elastic string of

natural length 27rc and modulus of elasticity /x is placed symmetrically

round the first three spheres. If the fourth sphere is just on the point of

ascending, shew that ^ircW—21jx {a
-

c).

42. A uniform rod, length c and weight W is suspended from a fixed

point by two equal elastic strings, the natural length of each being c and

the modulus tv. A particle of weight W is placed on the rod at a distance

X from its middle point, and when the system is in equilibrium the rod

makes an angle a with the vertical. If 6, are the angles the strings

make with the vertical, prove that

•T sin (6
~

cp)
-2 cot a . sin 6 sin

<f)
sin 6 ~ sin

c
~

sin {9 + 0) sin a

and obtain another equation connecting 6 and 0.

43. A lamina in the form of an isosceles triangle of vertical angle a

rests with its plane vertical and its two equal sides each in contact with a

smooth peg, the pegs being in a horizontal line distant c apart: prove

that the axis of the triangle is vertical or makes with it the angle

cos~^ [h sin a /3c). h is the length of the axis of the triangle.

44. Two strings of the same length have each of their ends fixed at

each of two points in the same horizontal plane. A smooth sphere

of radius r and weight IF is supported upon them at the same distance

>
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from each of the given points. If the plane in which either string lies

makes an angle a with the horizon, prove that the tension of each

= WajSr sin a
;
a being the distance between the points.

45. A smooth semi-circular tube is just filled with 2n equal smooth

beads that just fit the tube, and the whole is at rest in a vertical plane

with the bounding diameter highest. If Ii„^ be the pressure between the

with and {m + l)th. beads from the top, then

where W is the weight of a bead.

Hence deduce that when the beads are diminished indefinitely in

size, the pressure between any two is proportional to their depth below

the top one.

46. A smooth rod passes through a smooth ring at the focus of an

ellipse whose major axis is horizontal and rests w^ith its lower end on the

quadrant of the curve which is furthest removed from the focus. Shew

that its length must be at least ^a + ^a ^y(l + 8e-), where a is the semi-

major axis and e the eccentricity. »

47. A rigid bar without weight is suspended in a horizontal posi-

tion by means of three equal, vertical, and slightly elastic rods to the

lower ends of which are attached small rings A, B, and C through

which the bar passes. A weight is then attached to the bar at any

point G. Shew that, on the assumption that the extension or com-

pression of an elastic rod is proportional to the force applied to stretch

or compress it, and provided the rods remain vertical, then the rod at

B will be compressed, if G lie in the direction of the longer of the

A p2 4- R C~
two arms AB, BC, and be at a greater distance from B than ^—-—-—-

.

Ah ~hC

48. A number 7i of equal smooth spheres of weight IF and radius

7* is placed within a hollow vertical cylinder of radius a, less than 2r,

open at both ends and resting on a horizontal plane. Prove that the

least value of the weight JV of the cylinder in order that it may not

be upset by the balls is given by

aW'= {n
-

1) (a
-

r) W or a^V' = n(a- r) W,

according as n is odd or even.

49. Four equal smooth spherical balls of radius a are piled up

within a hollow sphere which is the largest which can retain them in

mutual contact, shew that its radius is a (1-1-2 \/li).

G. 7
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50. Four equal weights IF are tied by strings to four equi-distant

points of a loop of a string of length I, which is then placed sym-

metrically on a smooth sphere of radius r, all the weights hanging freely

down; shew that in the position of equilibrium, the tension of each

string is equal to

^^|(l+COsi;)/cOsi;|.

51. A quadrilateral ABCB has the sides I)A, AB, BG equal and the

angles DAB, ABC right angles, but AB and CD are not in the same plane.

If forces acting along the four sides can be reduced to a couple, its axis

will make with AB an angle

:COS" .J I CD--AB"

V CD--Y'6AB-



CHAPTER III.

STATICS OF CONSTRAINED BODIES, ETC.

72. The conditions of equilibrium which we have

proved in the last Chapter apply to any rigid bodies what-

soever. If however the body considered be a constrained

one, i.e. one that is not free to move in every way, as for

instance one that can only turn about a fixed axis, we
can obtain conditions of equilibrium which do not involve

the forces of constraint.

73. Prop. If a rigid body under the action of a system
of coplanar forces, have one point in the plane of the forces

fixed, it is a necessary and sufficient condition of equi-
librium that the algebraical sum of the moments about
the fixed point of the forces, excluding the force of con-

straint, be zero.

For the force of constraint acts through the fixed point
A, and therefore when there is equilibrium, the resultant

of the remaining forces must act through A. But the

algebraical sum of the moments of these remaining forces

about any point is equal to the moment of their resultant,
and therefore that about A vanishes. The condition is

therefore a necessary one.

It is also sufficient. For if it hold, it can be shewn as

in Art. 52 that A being a fixed point, the body is in equi-
librium.

7—2
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Ex, 1. A uniform rod which is 12 feet long and which weighs 17 lbs,

can turn freely about a point in it, and the rod is in equilibrium when a

weight of 7 lbs, is hung at one end. How far from that end is the point

about which it can turn ? Ans. 4 ft. 3 in.

Ex. 2. ABCD is a square : a force of 1 lb. acts from A to B, one of

4 lbs. from B to C, and one of 15 lbs. from D to C : if the centre of the

square is fixed, find the force which, acting along DA^ will maintain

equilibrium. Ans. 10 lbs.

Ex. 3. ABCD is a square, of which the point A is fixed : a force

of 2 lbs. acts along AB, one of 6 lbs. along AD, one of 10 lbs. along JBD,

and one of 3 lbs. along BC, find the force along DC which will maintain

equilibrium. Ans. (5 \/ 2 + 3) lbs.

Ex. 4. A lever ABC, with a fulcrum B, one-third of its length from

^4, is divided into equal parts in D, E, and F. At C, D, and F, forces of

12 lbs., 8 lbs., and 6 lbs. respectively act vertically downwards, and at E
a force of 16 lbs. acts vertically upwards. "What force applied to A will

cause equilibrium ? Ans. 21^ lbs.

Ex. 5. A weightless lamina in the shape of a regular hexagon

ABCDEF, is suspended from the middle point of ^jB : shew that it will

be in equilibrium with the side AB horizontal, if weights of 3 lbs., 7 lbs.,

3 lbs. and 5 lbs. are hung at C, D, E, and F respectively.

74. Pi'op. If two points of a rigid body be fixed, so

that it can only turn about the line joining them, it is a

necessary and sufficient condition of equilibrium that the

algebraical sum of the moments of the forces, excluding
those of constraint, about the fixed line, be zero.

If there is equilibrium, the algebraical sum of the
moments of all the forces about any line is zero, and
the moment of the force of constraint at each of the fixed

points about the line joining them is zero : therefore the
sum of the moments of the remaining forces, excluding
those of constraint, about this line, is zero. It is therefore

a necessary condition.

It can be proved as in Art. 54 that when the alge-
braical sum of the moments about any line is zero, there
is equilibrium provided two points in the line be fixed.

The condition is therefore sufficient.
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75. Prop, li one point of a i^^girl-oorly be 'fixed, t'Le

necessary and sufficient conditions of equilibrium are, that

the algebraical sum of the moments of the forces about
each of three lines through the fixed point, but not in the

same plane, be zero.

It can be shewn, as in the last proposition, that the

conditions are necessary.

It can be shewn, as in Art. 55, that they are sufficient.

76. To obtain the forces of constraint at the fixed

points in any of the cases considered in the last three

propositions, we have only to apply the remaining con-

ditions of equilibrium found in Chapter II.

77. As we shall often have to consider the case of bodies, such as

rods, which are connected by means of hinges ov joints, it will be well

to consider what a hinge is. We shall consider smooth hinges onh".

The connection may be supposed to be made in several ways. A point
of one body may be connected with one of the other body by a very short

string. Or one body may end in a very small hall ox pivot, which works

in a corresponding small socket or ring in the other body, so that there is

contact at only one point. Or we may suppose each body to end in a

small ball, which works in a corresponding socket of a small separate

body. In each of these cases there is no restriction on either body, excej^t

that the two ends must be in contact
; the action on each at the common

point must pass through this point, but will adapt itself in magnitude and
direction so as to maintain equilibrium, if possible.

If three or more bodies are connected by one joint, we may suppose
the connection to be made by each having a very short string attached

to it, and the strings to be knotted together. Or we may suppose each

to end in a small smooth ball, which works in a corresponding socket

in a small separate body.

78. In the construction of materials it is often

desirable to ascertain the internal forces between one

portion of a body and the adjacent portion. When all

these are known, we are able to adapt the strength of

each part to the force it has to sustain. For instance,
if w^e know that the tension at one point of a chain is
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always -half .that, at ^mother, the thickness of the chain

at the former point need only be half that at the latter
;

a savinof in material and in weiGfht is thus effected.

We have learnt that when a body is in equilibrium,
the forces exerted on any portion of it by the adjacent

portions counteract the remaining forces acting on the

portion in question. As, however, there is an infinite

number of systems of forces, each of w'hich counteracts

a given system, we cannot as a rule determine which

system is the one actually exerted, without going beyond
the limits of Elementary Statics. If, for instance, a

rope composed of several fibres be taut, though we may
know the tension of the rope itself, i.e. the sum of the

tensions of the different fibres, we cannot say how it is

distributed among them. This can only be ascertained

w^hen the elasticity of each fibre is known.

When a beam is merely stretched, i.e. when the ex-

ternal forces all act along it, the only internal forces called

into play will be between particles arranged in lines along
the beam. If then the beam be supposed to consist of

two parts A and B, the action of B on A will be the sum
of the forces exerted by particles of B on the adjacent

particles of A
,
all such forces being in the same direction

along the beam. This action is equal to the resultant of

the forces acting on the portion A, and which are also

external to the beam. It is clear that the greater this

action becomes, the more likely is the beam to be pulled
asunder at the point of junction of A and B

;
the action

therefore measures the tendency of the beam to break at

that point.

79. When the external forces on the beam are not all

along it, the action of one portion on another is not so

simple as in the above case. Take the following case.

Let ABGD be a rectang^ular beam which is firmlv fixed at

the end AB in a vice
; along DC let a force 8 be applied :

it will of course be perpendicular to the beam. Consider
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the equilibrium of the portion CDPQ, where PQ is an

imaginary section perpendicuhu" to the beam's length.

The forces in action are *S' and the innumerable forces

due to ABQP, acting at every point of the section PQ

B
Q

Fig 54

",
S

Let the latter be resolved along PQ and at right angles to

it : the sum of the former components must be equal and

opposite to >S', and will with it form a couple. The com-

ponents perpendicular to PQ must therefore be equivalent
to a couple, equal and opposite in sign to the former.

This shews that the forces near P must be in the direction

PA, and those near Q in the opposite direction : and
therefore that the tendency of >S' is to stretch the fibres

near P and crush those near Q. It must follow too, that

the magnitudes of the comjionents perpendicular to QP
depend on the moment of S about Q, and. not on the

magnitude of >S' simply. Hence the greater the moment
of S about Q the more likely are the fibres along PQ to

give way and the rod to bend at PQ.
Since PQ is supposed small compared with QC, the

numerical sum of the forces along PQ must be very much

greater than S, i.e. a force is far more likely to bend a

rod, when applied at right angles to it, than to pull it

asunder when apj)lied along it.

Similar reasoning wdll apply to abeam under the action

of any system of forces. We can shew that the tendency
to bend at any point is measured by the algebraical sum
of the moments about that point, of the forces external to

the rod and acting on one of the parts into which the

beam is divided by the point. This tendency to bend is

also termed the bendiny moment.
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Ex. 1. A light beam is supported in a horizontal position at its ends,

and a weight w is hung from its middle point. Find the bending moment

at a point distant x from one end. Aiis. -^ .

Ex. 2. If a heavy uniform rod be supported at its middle point, shew

that the bending moment at any point varies as the square of its distance

from the nearer end.

Ex. 3. A uniform rod AB of weight iv and length a is supported in a

horizontal position at A and B
;
from a point distant x from A a weight

w' hangs : find the bending moment at a point distant y from A .

y (a
-

?/) {a-x)yAns. ID.

10 .

2a

y [a
-

y)

+ w'

+ w

a
,

if ?/ is < .r,

,
if y is x.

2a a

Ex. 4. A uniform rod of weight w and length a, can turn freely about

a hinge at one end, and rests with its other end against a smooth vertical

wall, distant b from the hinge. Prove that the bending moment at a

point whose distances from the two ends are x, y, respectively, is

IV . xyh

80. When each of the bodies forming a system in

equilibrium is acted on by forces that reduce to three,

the problem of finding the position of each of the bodies,

Fig 55

fi'

or of ascertaining tho different forces, can often be easily
solved by constructing a series of triangles each of which
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is the triangle offorces corresponding to one of the bodies.

For instance, let us consider the case of a number of par-
ticles of equal weight fastened at intervals along a weight-
less string, the ends of which are attached to fixed points.

Let A, B, Cy D &c. be the positions of the particles, when
in equilibrium. Any particle, B for instance, is kept in

equilibrium by three forces, its weight vertically down-

Avards, and the tensions of the strings BA, BC. Draw a

triangle obc, having its sides ba, ao, oh respectively parallel

to the lines of action of these forces : then bv the triangle

Ffg 56

of forces these lines arc proportional to the forces, to whose

directions they are parallel: i.e. weight of ^1 : tension of

AB : tension of BC=ab : ao : ob. Produce ab down-

wards, and mark off be, cd, de &c., each equal to ah
; join

Oc, Od, Oe &c. Then Ob, be represent in every way the

tension of BC, on C, and the weight of C respective^, so

that CO must represent the tension of CD. Similarly do

represents the tension of DE, eo that of EF, and so on.

Draw OM perpendicular to abc : then the tangents of

the angles that ao, bo, co &c. make with the horizon are

aM bM ^ _^
Oil/' OM' OM' OM'

hence the tangents of the angles which the strings make
with the horizon form an arithmetic series. Also the
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horizontal resolved part of the tension of each string is

represented by Oil/, and is therefore the same for all.

Such a figure which is drawn to enable us to solve

the problem is called a Force-Diagram..
The above results can be obtained very easily by equat-

ing to zero the A . S's of the resolved parts in a horizontal

and vertical direction of the forces that act on each par-
ticle separately.

81. This 'Graphic' method can be applied to prove
the following important proposition.

Prop. If a weightless string be stretched across a
smooth surface, the tension is everywhere the same.

Let ABCD &c. be the string : then any small portion

Fig 57

of it AB \^ kept in equilibrium by the tensions at its ends,
and the resultant of the pressures of the surface on it :

as the pressures along AB all act along the normals to

the surface at the corresponding points, their resultant's
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direction must lie somewhere between the normals at A
and B.

Draw Oa, Ob, Oc, Od, Oe &c. parallel to the tensions at

A, B, C, D &c. respectively : and also a6, he, cd, &c. parallel
to the resultants of the pressures on AB, BC, CD &c.

Then by the triangle of forces, each line represents the

magnitude of the force to whose direction it is parallel.

Since the resultant pressure on AB has a direction be-

tween the normals at A and B, and these ultimately, when
AB is taken indefinitely small, make indefinitely small

angles with one another, ab makes with the normals at A
and B very small angles, i.e. makes with Oa, Ob, which

are parallel to the tangents at A, B, angles ultimately

equal to right angles. Hence the difference bet\veen Oa,
Ob must be of the second order of small quantities,

similarly those betw^een Ob and Oc, Oc and Od &c. are

of the second order, i.e. Oa, Ob, Oc, &c. and the tensions

they represent, are all equal.

ILLUSTRATIVE EXAMPLES.

Ex. 1. OA, AB axe two uniform beams loosely jointed at A, the former

being moveable about a hinge at 0. A string attached to B passes over a

fixed smooth pully and supports a weight P. If in the position of equili-

brium the beams are equally inclined to the vertical, the string will make

an angle cos~^ (
-——

j
with the vertical, where W, W are the weights

of the beams.
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Let a be the inclination of either of the beams to the vertical, and &

that of the string.

Ffg 59

liesolve the tension of the string (P) at B into two forces Pcosff

vertically, and P sin 6 horizontally.

Let 2a, 2b be the respective lengths of OA, AB.

From the equihbrium of both rods together by taking moments

about 0, we have

JV . a sin a +W (2a sin a + Z> sin a)-P cos (2a sin a + 2h sin a)

+ P sin 6 {2h cos a - 2a cos a) = 0. . .(1).

Taking moments about A for the equilibrium of A B

7F' . & sin a + P sin ^ . 26 cos a - P cos 6* . 2& sin a ^ (2).

Subtracting

Tr.asina + 2IF'. asina-2Pasin (^ + a)
= 0,

or (TF+2ir')sina = 2Psin(^ + a) (3),

from (2) Tf'sina = 2P.sin(a-6') (4).

Adding equations (3) and (4) we have

(
>F+ 3 [F') sin a = 4P sin a cos ^,

"f^+3Tr''
^-cos

-'(- 4P

If the stresses at and A be resolved horizontally and vertically, as

shewn in the figure, we can determine them as follows :
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Resolving horizontally and vertically for the eriuilibrium of OA

A"+Z= (5).

Y'+Y-W= (6).

Resolving horizontally and vertically for AB,

X+ Pain 6^0 (7),

Y+W- Pcosd=^0 (8).

Equations (5), (6), (7) and (8) completel}' determine A', }', X' and Y'.

Ex. 2. xVn equilateral pentagon consisting of five freely-jointed rods

is hung up with one side horizontal; shew that the inclination [6) of

either of the upper rods to the vertical is given by the equation

sin ^ + 6 sin- ^ + 8 sin^ ^ - 8 sin^ d= ^.

;r„-*

Fig. 60

Let AB be the fixed rod. Let be the inclination of CD and DE to

the vertical.

(The rods are drawn separate to make the figure clearer.)

Let W be the weight of each rod, 2a its length.

Let the stresses on the different rods at the joints be resolved horizon-

tally and vertically : the magnitude of these stresses are indicated in the

figure. The stress at D is entirely horizontal) as the rods CD, DE are

symmetrical with respect to the vertical.
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From the equilibrium of AE, resolving horizontally we have

Xj^Xo (1).

Taking moments about A

Tr.asin6'+ Y.2.2asmd-X.^. 2a cos ^ = (2).

From the equilibrium of ED, resolving horizontally'

^.= ^3 (3).

Kesolving vertically

Y^=W (-1).

Taking moments about E
W . a sin 0- A'g . 2rtcos 0==O (5).

Substituting from (1), (8) and (4) in (2) and (5),

2A'i.cos^ = 31T^'.sin^
•

(6).

Tf .sin0 = 2AiCos0 ....(7).

.
•

. cot ^ = 3 cot
~

(8) .

Since the sum of the horizontal projections of AE, ED, DC, CB is

equal io AB,
Aa sin 6 + Aa sin = 2a,

.-. sin 6* + sin = 1
(9).

By eliminating (0) between (8) and (9) we obtained the required result.

By substituting the value of 6 just obtained in (6), we determine X^
and by resolving verticall}' for the equilibrium of AE, we obtain another

equation which determines 1\.

The stresses at the angular points are thus completely determined.

Ex. 3. Six equal heavy rods freely jointed at the ends form a regular

hexagon ABCDEF, which when hung up by the point A is kept from

altering its shape by two light rods BF, CE. Prove that the thrusts of

the rods BF, CE are as 5 to 1, and find their magnitudes.

We shall suppose that there is a light pivot at B, to which the three

rods AB, BF, and BC are attached; and that a similar arrangement is

made at C.

Let W be the weight of each rod, 2a its length.

Since the rods BF, CE are only acted on by the stresses at their ends,

these stresses must be along the rods, i.e. horizontal, let them be S and 2'

respectively.

Since the rod BC is acted on by its weight along its length and the

stresses at B and C, these latter forces must also act along BC (Art. 61),

i.e. verticallv.
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From symmetry the stress at D on CD is horizontal.

in

3 2

'w

Fig 61

Let the stresses resolved horizontally and vertically at A, B, C and D
be those shewn by the figure.

From the equilibrium of AB, by taking moments about A ,

.(1).

From the equilibrium of the pivot B, resolving horizontally and

verticallv,

S=X, (2).

and ^2=73 (3)
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From the equilibrium of J5C,

Y^-W-Y, = .(4).

From the equilibrium of the pivot C,

T^X, (5).

i'4=i'5 (6).

From the equilibrium of CD,

X, = X, (7).

Y, =W (8).

By taking moments about C,

TF.a.
Y-^"^'c-2</..3-0 (9).

By substituting from the other equations in (1) and (9), we have

W. V3-2T=0,

Ex. 4. A gipsy's tripod consists of three uniform straight sticks

freely hinged together at one end. From this common end hangs the

kettle. The other ends of the sticks rest on a smooth horizontal plane,

and are prevented from slipping by a smooth circular hoop which encloses

them and is fixed to the plane. Shew that there cannot be equilibrium

unless the sticks be of equal length ; and if the weights of the sticks be

given (equal or unequal) the bending moment of each will be greatest at

its middle point, will be independent of its length, and will not be increased

on increasing the weight of the kettle.

Let OA, OB, OC be the three rods, P, Q, R their respective weights

acting at their middle points. Let A", Y, Z be the vertical stresses at A,

B and C, and A', Y', Z' the horizontal stresses.

Draw OH vertically downwards.

The three forces acting on OA, viz. P and the resultant stresses at O
and A, must be in one j^lane (Art. 61) the vertical pdane containing OA,
i.e. OAH.

X' the horizontal stress at A must therefore act along All
; similarly

Y' and Z' act along BJl and CH respectively.
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But these horizontal stresses act along the normals to the circle ABC,
so that H must be the centre of that circle. The lines HA, HB, HC

Fig. 62

must therefore be equal to one another, and also OA, OB, OC to one

another.

Let 21 be the length of each rod, 6 its inclination to the horizon.

Taking moments about for the equilibrium of OA
,
we have

X . 21 cos d- P. I cos e - X' 21 sin ^ = 0,

.-. 2A'-P-2.Y'tan^ = 0.

The bending moment at a point on OA distant x from A

X .xcohO-X X sm d - tt^ .
- cos d=—rr— {2lx - X-),

21 '2

Pcosd

U

{i--{i-xY}.

This is clearly a maximum, when .r = ?, i.e. the bending moment is

P I cos 6 Pr
greatest at the middle point, where it is equal to——r , or —-

, where

r is the radius of the hoop, i.e. is independent of I and W.

G. 8
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Ex. 5. An elastic band binds together any number of smooth right

cylinders so that each cylinder touches only two others. Prove that

if lines be drawn from a point parallel and proportional to the pressures

between the cylinders, their extremities will lie on a circle.

Fig.63.

Let Aa, Bh, Cc, &c. be the portions of the band in contact with the

cylinders A', B\ C, &c.

Fig. 64.

From any point draw a number of equal straight lines Oa, 0^, Oy,

05, &c. respectively parallel to the portions of the band zA, aB, bC,

cD, &c. These lines will therefore represent the tensions along the

corresponding portions of the band.
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Join a^, ^y, y8, &c.

By the triangle of forces, a^ represents the resultant action of Aa on

the cylinder A'. Similarly j3y, yd, &c. represent the resultant actions of

the band on the cylinders B', C, &c. respectively.

Through /3 draw /SO' parallel to the normal common to^'andi":

through 7 draw yO' parallel to the normal common to J5' and C. Join

50', eO', &c. By the triangle of forces 0'j3 and yO' represent the pressures

of the cylinders A' and C on B'.

Therefore O'y, yd represent two of the forces on the cylinder C", so

that 50' must represent the third, which is the pressure due to J)'.

Similarly it can be shewn that O'o, &c. represent the pressures between

the other pairs of cylinders.

Hence from O' straight lines O'a, 0'^, O'y, &c. have been drawn

representing in magnitude and direction the pressures between the

cylinders, and their extremities a, /3, y lie on a circle whose centre is 0,

since, Oa, 0^, Oy &c. are all equal.

(The cylinders are not necessarily circular.)

EXAMPLES.

1. Two uniform heavy rods, each of length a and jointed together by a

smooth hinge, are placed symmetrically over two pegs at a given distance

b apart in a horizontal line ; find the position of equilibrium of the rods.

Each rod is inclined to the horizon at an angle cos-^ (&/«)''•

2. Three equal uniform rods, AB, BC, CD, of the same material and

thickness, are jointed at B and C. If they are supported in a horizontal

plane by smooth pegs placed under AB and CD, shew that the distance

between either peg and the nearest joint is one-third the length of a

rod.

3. A uniform heavy rod of length 26 and weight W can turn freely

about one end. To this end is attached a string of length 1 {<2b), which

supports a sphere of radius a and weight W. When the system is in

equilibrium with the rod resting against the sphere, the rod makes an

angle d with the horizontal; shew that tan ^- tan a= ir&/Trrt, where

/ = a (sec a - 1), and I- + 2al is < -ib-.

4. A uniform heavy rod hangs by light inextensible strings, attached

to its ends, and also to the ends of another uniform rod, which can turn

about a pivot at its middle point. Prove that, when there is equilibrium,

either the rods or the strings are parallel.

8—2
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5. Prove that the angular points of a funicular polygon, in which

the weights are equal and also the horizontal distances between them,

lie on a parabola.

6. Two rods AC, BC, of equal uniform thickness are jointed at C,

and the ends A and B are fixed at two points in the same vertical line.

Prove that the direction of the action at the point C bisects the angle

ACB: and if AB^ — 4:AG.BG, shew that its magnitude is equal to a

quarter of the difference of the weights of the rods.

7. A chain formed of rods of equal weight jointed together is hung up

by its two ends and rests under the action of gravity. Shew that, if lines

be drawn from a point representing the actions at the hinges, their ends

lie on a straight line.

8. A rhombus is formed of four similar uniform rods connected by
smooth hinges at their extremities, and two of these rods rest upon two

smooth pegs in the same horizontal line : determine the position in

which the rhombus will rest with one of its diagonals vertical.

9. Two uniform rods AB, AC, of lengths a, h respectively, are of the

same material and thickness and smoothly jointed at ^. A rigid weight-

less rod of length I is jointed at B to AB and its other end D is fastened

to a smooth ring sliding on A C. The system is hung over a smooth peg
at A : shew that AC makes with the vertical an angle

al
tan~i

b^ + a^{a'^-l')'

10. A regular tetrahedron consists of six rigid bars without weight.

It is suspended from one angular point, and from the other three equal

weights W are hung : find the strain on each of the horizontal edges.

11. A beam AB of length a and weight w rests horizontally on two

smooth pegs, whose distances from A and B respectively are a/3 and a/4 :

if from A a weight 5io is hung, and from B
|- iv, shew that the bending

moment is greatest at the peg next A, and find its magnitude.

12. Two heavy uniform rods AB, BC, weights P and Q, are connected

by a smooth joint at B. The ends A and C slide by means of small

smooth rings on two fixed rods each inclined at an angle a to the horizon.

If and be inclinations of the rods AB, BC respectively to the horizon,

shew that

^ Qcota . Pcota
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13. At what distance from the foot of an upright post must a rope of

given length be attached, in order that a given force applied to the other

end may produce the greatest bending moment at the foot of the post ?

14. Four uniform rods AB, BC, CD, DA freely jointed at their ends

so as to form a quadrilateral rest on a smooth horizontal table. They
are connected together by an endless elastic string passing through small

smooth rings at their middle points. Prove that in the position of

equilibrium, the harmonic means of the segments into which each

diagonal is divided by the other are equal.

15. A heavy uniform rod of weight W and length 2a can turn freely

about a hinge at one end
;
a ring of weight iv, which slides along the rod,

is connected with a point in the same horizontal plane as the hinge, by

means of string whose length c is equal to the distance between the point

and the hinge. Shew that in the position of equilibrium the angle 6

which the rod makes with the horizon is given by the equation

cos 26 + ^^ cos 6 = 0.
2icc

16. Two equal uniform ladders of length /, freely jointed at A, are

connected by a rope PG and rest equally inclined to it on a smooth hori-

zontal plane ; a man of weight W goes a distance h up one of the ladders :

prove that the tension of the rope is -—
.

,

 

,
., ^ ,\iw = weight of

2a \J {a-
-

C-)

each ladder, 2c = length of the rope, and AP=AQ= a.

17. AB, BC, CD are three equal rods freely jointed at B and C.

The rods AB, CD rest on two pegs in the same horizontal line so that BC
is horizontal. If a be the inclination oi AB, and

/3
that of the reaction at

B to the horizon, prove that 3 tan a . tan /3
= 1.

18. Two equal rods can move in a vertical plane about an axis

through their middle points. The lower ends of the rods are connected

by a weightless elastic string, and a circle of weight W rests between the

rods above the joint. The radius of the circle and the unstretched

length of the string are each equal to half the length of either rod, and

the rods are at right angles when the system is in equilibrium ; prove

that Young's modulus for the string is (\/2
-

1).

19. Four equal uniform rods, each of weight IF, are jointed so as to

form a rhombus ABCD : the system rests on a horizontal plane, with AG
vertical, B, D are connected by a light string : shew that its tension is

2 W tan ^BAD, and find the actions on the rods at A and C.
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20. A triangular lamina ABC is moveable in its own plane about a

point in itself : forces act on it along and proportional to BC, CA, BA.

Prove that if these do not move the lamina the point must lie in the

straight line which bisects BC and GA.

21. Five rods are jointed so as to form a regular pentagon ABODE
and are suspended from A. Two strings connect G with the middle point

of AE, and D with the middle point of AB. Determine their tensions.

22. Seven equal and similar uniform rods AB, BG, GD, DE, EF, FG,
GA are freely jointed at their extremities and rest in a vertical plane

supported by rings at A and G, which are capable of sliding on a smooth

horizontal rod: prove that, 6, 0, xj/ being the angles which BA, AG, GF
make with the vertical, tan 6 = 4: tan <p

— 2 tan ^.

23. Four rods jointed at their extremities form a quadrilateral, which

may be inscribed in a circle : if they be kept in equilibrium by two" strings

joining the opposite angular points, shew that the tension of each string

is inversely i)roportional to its length, the weights of the rods being

neglected.

24. A series of particles are knotted on an endless string, forming a

closed polygon, and are in equilibrium under the action of given forces

applied to the particles. Shew that the tensions of the string may be

represented in direction and magnitude by means of straight lines drawn

from a point to the angular points of the polygon of forces.

25. Three uniform rods AB, BG, GD, lengths 2c, 26, 2c, rest symme-

trically on a smooth parabolic arc, whose axis is vertical and vertex

upwards. There are hinges at B and G, and all the rods touch the para-

bola. If W be the weight of either slant rod, shew that its pressure

a-c
against the parabola is W . y-r.

—
t^^tt • 4a = lat. rec.^ ^

{a^ + h^) b

26. Four equal uniform rods are freely jointed at their extremities so

as to form a square, and the middle point of one side is joined by three

strings to the middle points of the other three sides.

(1) If the square be laid on a smooth table, prove that the tensions

of two of the strings will be equal: and, given the magnitudes of the

three tensions, find the actions at the joints.

(2) If the square be hung up by one corner, prove that the difference

between two of the tensions will be four times the weight of a rod.
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27. Two equal rods AB, BC, of length 2a, are connected by a free

hinge at B : the ends A and C are connected by an inextensible string of

length I : the system is suspended from A : prove that, in order that the

angle AB makes with the verticle may be the greatest possible, I must be

equal to 4a/>y3.

28. Six equal and uniform heavy rods are hinged together so as to

form a hexagon : it is placed with one side on a horizontal plane and is

kept in the shape of a regular hexagon by means of a string fastened to

the middle points of the two sides adjacent to the base: find the tension

of the string and the stresses at the hinges.

29. A parallelogram formed of four rods of uniform material and

thickness, jointed at their ends, is suspended from one point, which is

connected with the opposite point by a string of such a length that the

figure is rectangular : prove that the tension of the string is half the

weight of the four rods, and that the direction of the stress between the

rods at either of the joints not connected by the string bisects the angle

between them.

30. A heavy uniform rod of length 2a turns freely on a pivot at a

point in it, and suspended by a string of length I fastened to the ends of

the rod hangs a bead of equal weight which slides on the string. Prove

that the rod cannot rest in an inclined position unless the distance of

the pivot from the middle point of the rod be less than a-]l.

31. A number of equal weightless rods are freely jointed and assume

the form of a.regular polygon when subjected to a system of stresses at

each joint, all emanating from a point on the circumscribing circle. Shew

that, if from a point radii be drawn to represent in magnitude and direc-

tion the stresses in the rods, and a polygon constructed so that its sides

taken in order represent the system of applied stresses, then the polygon

will be equiangular and described about a parabola, and further the

angular points of the polygon will all lie on a hyperbola.

32. Two equal beams AB, AC, connected by a hinge at A, are placed

in a vertical plane with their extremities B, C resting on a horizontal

plane; they are kept from falling by strings connecting B and G with

the middle points of the opposite sides ; shew that the ratio of the tension

of each string to the weight of each beam is \\J{Q cot"^ + cosec^^), where

d is the inclination of either beam to the horizon.



120 STATICS.

33. A trapezium ABCD is formed of four rods joined by hinges at

their extremities: BC, AD are equal, and the framework is suspended by

a string attached to the middle point of AB. Determine completely the

stresses at A and D. If

AB = AB = BC = ICD,

stress at A : stress at D= >/i9 : Jl.

34. A number of light rigid rods are loosely jointed together at their

extremities so as to form a closed polygon, and a force applied to each

side perpendicular and proportional to it, their lines of action meeting

in a point; prove that, if equilibrium be maintained, the polygon will be

inscribable in a circle, and if S be the point through which the forces

act, the centre of the circumscribed circle, and SO be produced to S'

so that SS' is bisected in 0, the stress at any angular point of the

polygon will be perpendicular and proportional to the distance of the

point from S'.

35. n equal uniform rods, each of weight W and length Z, are jointed

so as to form symmetrical generators of a cone whose semi-vertical angle

is a, the joint being at the vertex of the cone.

The rods are placed with their other ends in contact with the interior

of a sphere whose radius is r, so that the axis of the cone is vertical,

and a weight W is hung on it at the joint. Shew that

cos a = , ,

Z V3n-T7'2 + 4nfr'IF

and find the action at the joint on each rod.

36. A fire-screen holder with any number of unequal weightless arms

projects horizontally from a chimney-piece. Shew that, if the ends of

the arms all lie on a circle, the axes of the couples at the hinges all pass

through one point.

37. A regular octahedron is formed of 12 uniform rods jointed to-

gether at the ends. Along the three diagonals are stretched strings whose

tensions are T-^T^T^. Shew that the thrusts along the rods, joining the

ends of diagonals the tensions along which are Tj, T„, are

Prove also that, if the four diagonals of a cube be treated in a similar

way, equilibrium is not possible unless the tensions are all equal.
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38. Three uniform heavy rods of the same material (lengths 2a, 2b,

2c, respectively) hinged together at B and C rest on a vertical circle of

radius r, the whole system being in one vertical plane, and such that BC
is horizontal. Find the stresses at the hinges, and prove that

cot i ^ . (a2 cos2 6 - c- cos2 (^ + b' + 2bc)

= cot 1 (c2 cos2
- a~ cos2 9 + ¥ + 2ah)

= {a + h+c)r,

where 6 and are the acute angles made with the horizon by AB and

CD respectively.

39. Three equal heavy rods, in the position of the three edges of an

inverted triangular pyramid, are in equilibrium with their lower ends

attached to a joint about which each rod can turn freely, and their upper
ends connected by strings each of length equal to half that of a rod.

Prove that the tension of a string is to the weight of a rod as 1 : ^Jll.

40. A rhombus is formed of four rods of length a, hinged together.

Two opposite rods are supported in a vertical plane by two smooth pegs

which are separated by a horizontal distance h and vertical distance k.

Shew that the product of the horizontal distances of either jDeg from the

ends of the nearer unsupported rod is |(^•2
— 2a/i + K-), and that there

is no bending moment round a point in either suj^ported rod, whose

distance from its supporting peg is three times the shorter of the distances

of that peg from an unsupported rod.

41. Four equal uniform rods are jointed freely together so as to

form a rhombus: this is suspended by one of the angular points, and a

sphere of weight equal to twice that of the rhombus is balanced inside

it so as to prevent it from collapsing ;
shew that, if the radius of the

sphere be to the length of a rod in the ratio 5 : 8 V3, the rods will, in

equilibrium, make each an angle tt/G with the vertical.

42. ABCD is a quadrilateral formed by four uniform rods of equal

weight loosely jointed together. If the system be in equilibrium in a

vertical plane with the rod AB supported in a horizontal position, prove
that 2 tan ^ = tau a ~tan/3, where a, /3

are the angles at A and B, and 6

is the inclination of CD to the horizon : also find the stresses at C and

D, and prove that their directions are inclined to the horizon at the

angles tan"^ h (tan ^ - tan d) and tan~i h (tan a + tan 6) respectively.
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43. Four equal rods are joined together so as to form a rhombus

ABCD, lying upon a smooth horizontal plane, and elastic strings AG,
BD of the same substance are stretched along the diagonals : if a be

the length of a side of the rhombus, and if the natural lengths of the

strings be ^ and >— ,
find the angles of the rhombus when there

2
2(1+V2)

is equilibrium.

44. Seven rods are freely jointed together to form a regular

heptagon ABCDEFG. Two equal strings connect G with D and B with

E, and the whole system is suspended by the point A. Find the tension

of the strings.

45. Three beams AB, BC, CA are joined together at A, B, G
;
B

being an obtuse angle, and are placed with AB vertical, and A fixed to the

ground, so as to form the framework of a crane. There is a pulley at G,

and the rope is fastened to AB near B, and passes along BG, and over

the pulley. If it support a weight W large in comparison with the

weights of the framework and rope, find the couples which tend to break

the crane at A and at B.

46. A door is moveable about its line of hinges which is inclined at

an angle a to the vertical ; shew that the couple necessary to keep it in a

position inclined at an angle ^ to its position of equilibrium is propor-

tional to sin a sin
/3.

47. Three equal heavy rods AB,BG, GD are jointed to each other at B
and G and to fixed points at A and D, where AD is horizontal and equal
to the length of a rod. Shew that the horizontal couple required to

turn the rod BG through an angle 6 is BG . W . sin ^6, where W is the

weight of each rod.

48. The lid ABGD of a cubical box, moveable about hinges at A
and jB, is held at a given angle to the horizon by a horizontal string

connecting C with a point vertically over A : find the pressure on each

hinge.



CHAPTER lY.

CENTRES OF MASS.

82. We have seen (Art. 59) that the resultant of

two parallel forces F, Q, acting at fixed points A, B
respectively, is equal to their algebraical sum, and acts

along a line parallel to the line of action of either :

also that its line of action cuts AB at a fixed point,
whose jDosition depends solely on the relative magnitude
of P and Q and not on their direction. So too, if we have
a niunher of j^arallel forces acting at fixed points, their

resultant is equal to their algebraical sum, and its line of

action is parallel to that of any of them, and passes

through a point whose position depends solely on the

positions of the fixed points and the relative magnitude
of the forces. For two of the forces are equivalent to

their sum acting parallel to them and through a fixed

point : this resultant and a third force of the system are

also equivalent to the algebraical sum of the three acting

parallel to them through a fixed point ;
in this way we

can go on reducing the number of the forces until we
arrive at the final resultant acting through a fixed point.
We shall necessarily arrive at the same fixed point, what-
ever be the order in which we compound the forces :

for if by compounding them in different orders we obtain

two points, at either of which the resultant may act, its

line of action must be the line joining the two points
(Art. 5.S), which is inconsistent with its being always
parallel to the directions of the original forces.
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It is assumed above that the algebraical sum of

the forces is not zero, otherwise, if they are not in equi-
librium, they will not reduce to a single force, but to a

couple.

83. Def. The centre of a number of jmrallel forces

acting at fixed points, is the point at which their resultant

always acts, however their direction alters, so long as

their relative magnitudes remain the same.

If the points at which the parallel forces act lie in one

plane, we can find an expression for the distance of the

centre of the forces from any straight line in the plane.

Let A^y A^, A^, &c. be the points of application of the

parallel forces, P^, P^, P^, &c., and let C be their centre.

-^p.

X'..
M:

A -

M

'^(P)

Mq Mq

^P2

Fig. 65

Let X'X be any straight line in the plane containing the

points of application. Draw A^M^, ^2^^2' ^^-^ (7J/ perpen-
dicular to X'X. Let x^, x^ X be the lengths of these

perpendiculars, which are reckoned positive or negative

according to the side of the line on which the corresponding

point of application lies.

As the position of G is independent of the direction of

the forces, it will not be affected by supposing P^P^ ... to

act parallel to X'X: since the algebraical sum of P^, P^,
&c. acting at C, is the resultant of these parallel forces,

the algebraical sum of the moments of P^, P^, &c. about
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any point in X'X is equal to the moment of their alge-
braical sum at G, about the same point in X'X.

' 7? — 1^1
"^ 2^2 + • • • _ '^{^^)

'

P, + P,+ ... t{P)'

As we can find in this way the distance of the centre

of a number of parallel forces acting at fixed points in one

plane, from two intersecting straight lines in that plane,
its position is completely determined.

84*. When the points of application of the parallel
forces are not in one plane, we can find an expression for

the distance of the centre from any given idane.

Let A^, A^, &c. be the points at which the forces P^, P^,
&c. respectively act : let C be the centre. Draw A^2I^,A^M^,

Y
^'

^(P)

y^l mi /I
^l' ...

^'
X,

M2

%

Fig. 66

'&c., CM perpendicular to the given plane; let x^, x^...x
be these respective distances, which are reckoned positive
or negative according to which side of the plane the corre-

sponding points lie. Let XX be any straight line in the

plane.

Since the position of G is independent of the direction

of the forces, it will not be affected b}^ sujDposing this
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direction to be parallel to the plane and at right angles
to X'X.

As the resultant of P^, P^, &c. is their algebraical sum

acting at G, the algebraical sum of the moments of P^, P^,
&c. about X'X is equal to the moment of their algebraical
sum acting at G about X'X.

.: P, . A^M^ + P^.A^M^ + kc. = (P^ + P^+ ...) GM -,

:. Pj^i + P^x^ + &c. = (Pj + P^ + ...) ;^
;

. P,^, + P,^,+ ... _ S(Pt)

P, + P, + ...

~
S(P)

•

When we have found the distance of G from three

planes which have only one point in common, its position
is completely determined.

Ex. 1. is the intersection of the diagonals of a square ABCD, whose

side is 1 foot long : find the position of the centre of like parallel forces

acting at A, B, C, D and O, respectively proportional to 4, 3, 4, 6 and 9.

Ans. In DB, distant 5^% inches from AD.

Ex. 2. At the angular points A, B, C of an equilateral triangle,

forces of 1, 2, and 3 lbs. respectively act : find the distance of their

centre from C.

Ans. I sjl .AB.

Ex. 3. At four of the angles of a regular hexagon taken in order,

parallel forces proportional to 3,-2,7 and - 5 act : find the magnitude of

the forces that must act at the remaining angles, in order that the centre

of the six parallel forces may be the centre of the hexagon. Ans. 6,-1.

85. Def. Let A^, A^, A^, &c. be a number of particles
of masses m^, 7n^, m^, &c. respectively; then if a ]3oint G^
be taken in A^A^, so that

m^. G^A^ =m^.G^A^,
this point is called the centre of mass or the centre of
inertia of the particles A^ and A^. The centre of mass of

A^ and a particle of mass {7n^ + m,^) situate at G^ is the

centre of mass o^ A^, A^ and A^. That of A^ and a particle
of mass {m^ + m^ + ni^ situate at the centre of mass of



CENTRES OF MASS. 127

4'A^, A^ and A^ is the centre of mass of A^, A^, A^ and A
Continuing this process we obtain the centre of mass of

any number of particles.

From this definition of the centre of mass of a number
of particles it is clear that its position is the same as that

of the centre of a number of like parallel forces acting one
on each of the particles, each force being proportional to

the mass of the particle on which it acts. Hence if the

particles of masses m^, iii^.,.
be at distances ^,, x^... re-

spectively from a given plane, the distance of their centre

of mass from that plane is %(mx)/^(m) ; or, in other words,
the distance from a given plane of the centre of mass of a

number of particles is obtained by multiplying the mass of

each by its distance from the plane, and dividing the alge-
braical sum of the products by that of the masses.

If the jDarticles are not fixed in position, but move
so that the configuration formed by them is unaltered in

shape, their centre of mass will be a point moving with

the configuration, but occupying a position fixed relatively
to it.

Def. The product of a mass into the distance of its

centre of mass from any plane or line is termed its moment
about that plane or line.

We see from the above, that the algebraical sum of

the moments of a number of masses about any plane,
and if they are coplanar, about any line, is equal to the

moment of the whole mass collected at the centre of mass
about the same plane or line.

86. Let us suppose that the above system is acted on

by a number of like parallel forces, one on each particle, their

magnitudes being proportional to the masses of the par-
ticles on which they respectively act : now, no matter how
much the direction of the forces varies, or to what extent

the particles move, so long as the configuration formed by
them remains the same, the resultant of these forces will

always pass through the centre of mass, wdiich is fixed re-
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latively to the configuration. Since the magnitude of a

particle's weight is proportional to its mass and its direc-

tion is towards the earth's centre, the weights of a system
•of particles which are not far from one another in com-

13arison with their distance from the earth's centre, are

forces approximately parallel, and also proportional to the

masses of the particles on which they act. The line of

action of their resultant then will approximately always
pass through a point fixed relatively to the configuration
formed by the particles, if that configuration does not alter,

though it move as a whole. This point, which we have
called the centre of mass of the system, is on this account
often called its centre of gravity/.

We may define the centre of gravity thus : the centre

of gravity of a body is the point, fixed relatively to the

body and through which the resultant of the weights of

the particles composing it always acts, however the body
move, provided it always moves as if it were rigid.

Strictly speaking, there is no such point of necessity
for every body, because the weights of the particles com-

posing the body are not accurately parallel, but they are so

nearly so that their resultant will pass very close to the

centre of mass, if it does not pass through it.

It is not assumed in the definition of the centre of

gravity that the body is a rigid one : any body whatsoever,
a flexible string for instance, or a mass of liquid, will have a

centre of gravity corresponding to every definite shape of

the body, though its position in the body will generally
alter with an alteration of the body's shape.

If a body be such that the action of gravity on it can

always be reduced to a single force passing through a point
fixed relatively to the body, whatever be its position re-

latively to the earth, the body is termed a centrobaric

body, and the point its centre of gravity, in a stricter sense

than is usually attached to the term.

87. Def When a substance is such that the mass
of any volume of it is proportional to that volume, it
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is said to be homogeneous, or of uniform density : when
this is not the case, it is said to be heterogeneous, or of

variable density.

When a substance is homogeneous its density is mea-
sured by the numerical measure of the mass in a unit of

volume.

When the density of a substance varies, the average

density of any volume is measured by the ratio of the

numerical measure of its mass to that of its volume. The

density at any point is measured by the limit of the

average density of an indefinitely small volume containing
the point in question.

88. Prop. Having given the centres of mass of a body
and of one part of it, to find that of the remaining part.

Let m^, m^ be the masses of the two parts forming the

body, (7^, Og their respective centres of mass. Join Gfi^,

c7 b' c^

Fig 67

and take C between C^ and C^ such that m^^ . CC\ = m^ . CC[^ :

then G is the centre of mass of the whole.

Since C\ , C, G^ are connected in this way, it is perfectly
clear that if G^ and G are given, 0^ is the point obtained

by producing Gfi to a distance = (nijm^ . GG^.

Gor. In a similar way we can obtain the centre of

one part of a system of parallel forces when the centres of

the whole system and of the remaining part are known.

89. Projf. If the mass of each of a series of particles
be multiplied by the square of its distance from any given

point, the sum of the products so obtained is equal to the

sum of the products obtained by multiplying the mass

of each particle by the square of its distance from the

centre of mass of all the particles, together with the

product of the whole mass into the square of the distance

of the given point from the centre of mass.

G. 9
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Let A^, A^, &c., A^ be n particles of mass m^, m^. . . m,^ ;

let G be their centre of mass, and any point what-
soever.

Join GO, and draw AJ\I^, ^J^h^ ^^- perpendicular
to GO.

Then AO''=^AG''+ OG' -20G. GM.

G M
Fig 68

The —
sign in this equation refers to the above figure

where M and are on the same side of G, but if we

agree that GM shall be reckoned positive when M is on

the same side of G as 0, and negative when on the other,

the equation holds for all figures.

Hence

t (m . AG') = S (m.AG') + t (m . OG')
- 2X (m . OG. GM)

= t (m ,AG') + OG' . S (m)
- 20G . X (m . G3I),

But since G is the centre of mass of the n particles,

S (m. GM) is zero (Art. 85), and we have

S (m .AO') = ^(m.A G') + OG\t (m).

(In the above proof, it is not assumed that A^, A^, &c.

are in one plane.)

Cor. If the mass of each of a series of particles be

multiplied by the square of its distance from any given

point, the product so obtained is least when the given

23oint is the centre of mass of the system of particles.

90. We will now investigate the positions of the

centres of mass of some of the simpler geometric figures.
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Prop. If a body consists entirely of pairs of particles,
such that those forming each pair are of equal mass and
at equal distances from, but on opposite sides of, a certain

point, that point is the centre of mass of the body.

For this point is clearly the centre of mass of each pair,
and therefore of all the pairs, i.e. of the whole body.

Hence the centre of mass of a thin rod, uniform in

density and sectional area, is its middle point : that of a

lamina, uniform in thickness and density, and in shape,
a circle, ellipse, or parallelogram, is its centre of figure.
Also the centre of figure of a homogeneous sphere, ellip-

soid, or parallelepiped is its centre of mass. The centres

of mass of many other figures can be thus determined.

91. Prop. If a body consists entirely of pairs of par-

ticles, those forming each pair being of equal mass and such

that the middle point of the line joining them is on a

certain straight line or plane, the centre of mass of the

body lies in that straight line or plane.

For this straight line or plane contains the centre of

mass of every pair of particles and therefore that of the

whole body.

Hence any straight line or plane which divides a

homogeneous body symmetrically, contains its centre of

mass. For instance the centre of mass of the volume of

surface of a rio^ht circular cone, with its base at riorht

angles to its axis, lies in the axis : that of a segment of

an ellipse or parabola lies in the diameter conjugate to the

chord cutting^ off" the seo'ment.

When we speak of the centre of mass of a surface or plane figure,

we suppose the figure to be of very small uniform thickness. Similarly
a line or curve is supposed to be of very small uniform sectional area.

92. To find the centre of mass of a plane triangle.

Let ABC be the triangle. Bisect BG in D, and join
AD. Draw hdc parallel to BG, meeting AD vn d.

9—2
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Then hd ; BD = Ad : AD = dc : DC;
.'. hd = dc.

Similarly it may be shewn that AD bisects any other

line parallel to BG. Hence the triangle consists entirely of

Fig 69

pairs of particles, those forming each pair being of equal
mass, and such that AD bisects the line joining them: the

centre of mass of the triangle is therefore in AD. (Art. 91.)

Bisect AC in U, and join BE meeting AD in G.

Then we can prove as before that the centre of mass
of the triangle lies in BE, as well as in AD: it must
therefore be (J, their point of intersection.

Join DE : since D, E are the middle points of BG, AG
respectively, DE is parallel to AB, and

DE=iAB;
.: AG : GD = AB : DE=2 : 1;

.'. AG = ^AD.
Hence the centre of mass of a triangle is obtained by

joining the vertex with the middle point of the base and

taking the point two-thirds the way down this line from
the vertex.
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The centre of mass of the triangle ABC coincides with

that of three equal particles placed at A, B, and C. For
the centre of mass of those at J5 and C is at D, half-way
between them : and that of all three will be in AB at a

point (/,
such that

Bg : gA = l : 2, or Dg = ^BA.
Hence G and g are the same point.

Cor. By drawing an indefinitely large number of

lines parallel to BC and at equal distances from one an-

other, the triangle ABC may be divided into an infinitely

large number of indefinitely narrow strips, of equal
breadth, and having their centres of mass in AD. Now
the marss of each strip is proportional to its area, i.e. to

its length, and therefore to its distance from A measured

along AB : also for the purpose of finding the centre of

mass of tlie whole we may suppose the mass of each

portion collected at its centre of mass. The problem
therefore of finding the centre of mass of all these strips,

i.e. of the triangle, is the same as that of finding the

centre of mass of an infinite number of masses arranged

along AB at equal, but indefinitely small distances, each

mass being proportional to its distance from A. The
centre of mass in the latter case, then, is at a distance

from A equal to two-thirds of AB. Hence the centre of

mass of a thin rod, of uniform sectional area, but such

that the density at any point varies as its distance from

one end, is distant from that end two-thirds the length of

the rod.

Also the centre of mass of the portion of a paraboloid
of revolution, cut off by a plane perpendicular to the axis,

is at a distance from the vertex equal to two-thirds the

lensfth of the axis cut off.

For let the paraboloid be divided into an indefinitely

large number of thin slices of equal thickness by planes

perpendicular to the axis. Then the volume of any slice

is proportional ultimately to the square of its radius, i.e. to
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its distance from the vertex, whence the result given above

follows at once by the preceding corollarj^

Ex. 1. Weights of 1, 4, 2, 3 lbs. are placed at the corners taken in

order of a parallelogram ABCD; a weight of 10 lbs. is also placed at 0,

the intersection of diagonals ;
find the jDosition of their centre of mass.

Ans. If E be the middle point of BC, the point required is in OE, at

a distance from equal to one-tenth of OE.

Ex. 2. A line AB is bisected in C^ , C^B in Co , C.,B in C.^ ,
and so on

P P
ad infinitum, and weights equal to P, — , ^ , &c. are placed at the points

Oj, Cg, Cg, &c. Prove that the distance of the centre of mass of the

whole system from B is equal to one-third of AB.

Ex. 3. Find the centre of mass of seven equal particles "placed at

the angular points of a regular octagon.

Ans. If A be the unoccupied angular point and the centre of the

octagon, the required point is in ^0 produced, at a distance from equal

tof^O.

Ex. 4. A square ABCD is divided into four equal triangles, by its

diagonals, which intersect in : if the triangle OAB be removed, find G,

the centre of mass of the remaining three. Prove that if E be the

middle point of CD, G is in OE, and OG= ^AB.

Ex. 5. The sides of a square ABCD are bisected, and the points of

bisection of the opposite sides joined. If the small square, having the

angle A, be removed, find G the centre of mass of the remaining three.

Ans. G iQ in AC &nACG — ^^ AC.

Ex. 6. Out of a circular lamina of radius r is cut a circle, whose

diameter coincides with a radius of the lamina : find the position of the

centre of mass of the remainder.

Ans. The c, m. is at a distance from the centre of the lamina

equal to r/6.

Ex. 7. A figure consists of a square and an isosceles triangle, whose

base is one of the sides of the square : if the side of the square be C inches,

and the height of the triangle be 6 inches, find the centre of mass of the

figure.

Ans. Within the square, |-
of an inch from the base of the triangle.
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Ex. 8. A uniform rod, 18 inches long, is bent so that the two parts,

8 and 10 inches long respectively, are at right angles to one another.

Find the distance between the centres of mass of the new shape and the

original. Ans. vV^ inches.

Ex. 9. Equal weights are placed at n-2 of the corners of a regular

?t-sided polygon : find their centre of mass.

Ans. If A, B be the unoccupied corners, C the middle point of AB,

and the centre of the polygon, the centre of mass is in CO produced at

2
a distance from O equal to OA.n-2

Ex. 10. Having given the position of the centre of mass of two par-

ticles A and B, and also that of A and C, find that of B and C.

Ans. Join B with E, the c. m. of A and C, and C with D, the c. m. of

A and B; let these two lines meet in G. The point where AG meets BC
is the c. M. of B and C.

Ex. 11. Assuming that the pressure on an indefinitely small area

below the surface of a liquid is perpendicular to the area and varies as

the area and its depth below the surface conjointly: find where the re-

sultant pressure on a parallelogram, one of whose sides is in the surface

of the liquid, acts.

Ans. At a point whose depth below the surface is two-thirds that of

the lowest side,

Ex. 12. With the same assumption as in the last example, shew that

the resultant pressure on any plane area below the surface of a liquid is

proportional to the area and the depth of its centre of mass below the

surface conjointly.

Ex. 13. Find the centre of mass of a quadrilateral, two of whose sides

are parallel to one another, and respectively 6 inches and 14 inches long,

while the other sides are each 8 inches long.

Ans. In the line joining the middle points of the two parallel sides,

26v/3
at a distance of ^>— inches from the longer side.

15

Ex. 14. Find also the centre of mass of the perimeter of the above

quadrilateral.

Ajis. In the line joining the middle points of the parallel -sides, at a

distance from the greater equal to Vv^ inches.
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93. To find the centre of mass of a triangular pyramid.

Let ABCD be the pyramid. Bisect BG in E, join

AE, and take H in it, so that

AH=^IAE.

Fig 70 B

Let dhc be a section of the pyramid, made by a plane

parallel to ABC, and let ae be its intersection with the

plane ADE.

Since the planes ABC, abc are parallel, he, BG are also

parallel ;

.-. he : ec = BE : EG;
.'. he = ec,

and e is the middle point of he.

Similarly ae, AE are parallel, and

ah : ae =AH : AE = 2:3,

i.e. h is the centre of mass of the triangle ahc.

Hence, if we suppose the pyramid divided into an in-

finitely large number of indefinitely thin triangular slices

made by planes parallel to ABC, the centre of mass of

each slice will lie in the line DH, which must therefore

contain the centre of mass of the pyramid. Join BE,
and take K in it so that BK = ^DE; join AK intersecting
BH in G. Then, as before, we can shew that the centre of
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mass of the pyramid lies in AK, as well as in BII
;
the

point of intersection G of these two lines must be the

required centre of mass, then. Join HK.

AH=IAE, and DK^^DE-
.'. HK is parallel to AD,

and DG: GH = AD : HK = AE :HE=S:l
.-. DG = IDH.

Hence the centre of mass of the pyramid is in the line

drawn from any vertex to the centre of mass of the op-

posite face, and is such that its distance from the former

point is three times its distance from the latter.

Cor. The centre of mass of a triangular pyramid
coincides with that of four particles of equal mass placed
at its angular points.

For the centre of mass of the particles at A, B and
C is H, and therefore that of the four is in HD, and at a

distance from D equal to three times its distance from H;
it is therefore G, the centre of mass of the pyramid.

94. If the above pyramid be divided into an indefi-

nitely large number of indefinitely thin slices, such as

ahc, of the same thickness, we may suppose the mass of

each slice to be collected at its centre of mass //, which

lies in DH : also the mass of any slice ahc is proportional
to its area, since they are of equal thickness, and there-

fore to the square on Dh. Hence finding the centre of

mass of a triangular pyramid is the same problem as

finding that of an indefinitely large number of masses

arranged at equal but indefinitely small intervals along a

straight line, each mass being proportional to the square
of its distance from one end of the line. We infer then

that the centre of mass in the latter case is at a distance

from this end equal to three-quarters the length of the

line. For instance, the centre of mass of a thin rod of

uniform thickness, but whose density varies as the square
of the distance from one end, is the point whose distance

from this end is three-quarters the length of the rod.
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95*. To find the centre of mass of a pyramid having
any given rectilinear plane figure for its base.

Let V be the vertex of the pyramid, ABODE the

perimeter of its base.

Let abcde be a section of the pyramid made by
a plane parallel to the base. Let FQR be any straight

Fig 71

line in the plane of the base; join VP, VQ, VR, cutting
the plane ahcd in p, q, r respectively; p, q, r may be said

to be the corresponding points to P, Q, R respectively.
Since pqr, PQR are the sections of parallel planes made
by the plane PVQ, they are parallel ;

.-. PQ '.pq=VQ : Vq = QR:qr,
.', p)q : qr = PQ : QR.

Hence, if Q be the centre of mass of two given particles
at P and R, q will be that of particles at p and r, provided
the masses of the latter particles have the same ratio to one
another as those of the former have. Similarly, if we
have any number of particles at different points of the

base and also another set of particles at the corresponding
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points of the parallel section, the mass of each particle of

one set bearing a constant ratio to that of the correspond-

ing particle of the other set, we could shew in the same way
as we have done for two, that the centres of mass of the

two sets are corresponding points, i.e. that they both lie in

a straight line passing through the vertex. But we may
suppose the two sections ABCD, abed to be made up each
of a number of equal particles, the positions of the particles

forming one set corresponding to the positions of those

forming the other set. Hence, if H be the centre of mass
of the base, the point h, where VH cuts the section abed,
is the centre of mass of the latter. Dividing- then the

pyramid up into an infinitely large number of indefinitely
thin slices cut off by planes parallel to the base, we see

that the centre of mass of each slice and therefore that

of the whole pyramid lies in Vlf. But the pyramid may
be divided into a number of triangular pyramids VHAB,
VHBC, &c. and the centre of mass of each of these will lie

in a plane parallel to the base and at a distance from it

one quarter the distance of the vertex from it. The
centre of mass of the pyramid must therefore be at G,
the point where this plane cuts VH

]
i.e. the centre of

mass is found by joining the vertex with the centre of

mass of the base, and taking a point in the joining line

at a distance from the former point three times its distance

from the latter.

Cor. Since a cone or pyramid with a curvilinear base

may be regarded as the limiting case of a pyramid with
a rectilinear base, when the number of sides is indefi-

nitely large, we can find the centre of mass of a cone in

exactly the same way as we find that of a j)yramid with
a rectilinear base.

9G*. To find the centre of mass of the surface of a

pyramid with a rectilinear base.

If the pyramid be the one in fig. 71, its surface may
be divided into a number of triangles having the common
vertex V : the centre of mass of each triangle and there-
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fore that of the whole surface will lie in a plane parallel
to the base and at a distance from the vertex two-thirds

that of the base. Also, as in the case of the solid pyramid,
the centre of mass of the surface may be shewn to lie

in the line joining the vertex with the centre of mass
of the perimeter of the base. Hence the point where
this line meets the plane mentioned above, is the centre

of mass required. The centre of mass then is in the line

joining the vertex of the pyramid with the centre of mass
of the perimeter of the base, and its distance from the

latter point is half its distance from the former.

Cor. The centre of mass of the surface of a cone may
be found by the same rule, as a cone is the limiting case

of a pyramid, when the number of sides of the base is

indefinitely increased.

97*. To find the centre of mass of an arc of a circle.

Let ABC be the arc, subtending an angle 2a at the

centre 0.

Draw OB bisecting the angle AOG\ it is clear from

the principle of symmetry of Art. 91 that the centre

o<[

Fig 72

of mass is in OB. Construct a regular polygon circum-
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scribing the arc
;

let PQ be one side of it, touching
the circle at R. Draw Aa, Pp, Qq, Cc perpendicular to

the tangent aBc at B, RM perpendicular to OB, and QS
to Pp.

The right-angled triangles PSQ, ORM are similar, since

QS, PQ are respectively perpendicular to OM, OR.

.-. PQ : QS = OR : OM;
.'. PQ.OM=OR.QS = OB.pq;

.-. X(PQ. OM) =^{0B. pq)
= OB.t (pq) ;

.'. OG . perimeter of polygon = OB . ac = OB . chord AC
(Art. 85) ;

where G is the centre of mass of the polygon.

Also, when the sides of the polygon are taken in-

definitely small, the limit of the perimeter of the polygon
is that of the arc, and their centres of mass are also

coincident. Hence the distance of the centre of mass of

the arc ABC from is

radius OB . chord AC _r sin a

arc ABC
~"

~~a

98*. To find the centre of mass of the sector of a

circle.

Let ABC be the sector : from 0, the centre of the

circle, draw OB bisecting the angle AOC. Then (Art. 91)
the centre of mass of the sector is clearly in OB. In

the arc ABC inscribe a regular polygon ;
let PQ be one

of its sides, R the middle point of PQ : join OR, and
take r in OR such that Or is equal to | OR. Then
the centre of mass of the triangle OPQ is r, and the

centres of mass of all such triangles are arranged at equal

angular intervals along the arc of a circle of radius 0?% and
whose anoxic is AOC. But when the number of the sides

of the pol3'gon is increased indefinitely, Or becomes equal
to 1 05 ultimately, the sum of the triangles of which

OPQ is a type becomes the sector AOC, and the centre of
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mass of the latter is that of an infinite number of equal
masses arranged at equal angular intervals along an arc

Fig 73 \r

of a circle of radius \0B, and whose angle is equal to

AOC. But the centre of mass of the masses arranged along
this arc is that of the arc itself. Therefore the distance

of the centre of mass of the sector from

_2 0^ X chord ^0
~3' arc ^(7

Cor. As the segment of a circle is the difference be-

tween a sector and a triangle, its centre of mass can be

found by the method of Art. 88.

The centre of mass of the portion of a circle cut off

by two parallel lines can also be obtained, since the figure
consists of the difference of two segments.

D9. To find the centre of mass of the belt of a sphere
cut off by two parallel planes.

Let ABh^ the arc of a circle, which by revolving about
OE generates the belt ABGD of a sphere in question.
Then (Art. 91) the centre of mass of the belt lies in OE.
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Let PQ be the side of a regular polygon, circum-

scribing the arc AB) let R be the middle point of PQ,

Fig 74

where it touches the circle. Produce PQ to meet OE in

T, and draw PM, RK, QN perpendicular to OE, and QL
perpendicular to PM. The area of the frustum of the

conO; generated by the revolution of PQ about OE
= PT.7rP3I^QT.7rQF
= ir.{PR + RT)PM-7r{RT-RQ).QN'
= 7r.RT.PL + 2irPR . RK
= 2'jr.PQ. RK, by similar triangles PQL, RKT
= 217 OR. MN by similar triangles PQL, ORK
= the area of the belt cut off by the planes PM,

QN from the cylinder circumscribing the sphere and

having its axis along OE.
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Hence the sum of the areas of any number of frusta

of cones, of which the one considered is a type, is equal to

the sum of the areas of the corresponding belts of the

circumscribing cylinder. But ultimately, when the number
of the sides of the circumscribing polygon is taken in-

definitely large, the sum of the areas of the frusta of

the cones becomes the area of the belt of the sphere.
Hence the area of the belt of a sphere, cut off by parallel

planes, is equal to that of the coaxial circumscribing cylinder
cut off by the same planes.

Let G be the centre of mass of the belt of ABCD
of the sphere, G' of the corresponding belt of the cylinder.
Then

OG . area of ABCD = moment of ABCD about the plane

through perpendicular to OE
= X (27r . 0^ .MN . OK) (Art. 85)

= moment about the same plane of the belt cor-

responding to ABCD of the cylinder

= OG' . area of the belt of the cylinder ;

.-. 0G= OG'.

Therefore G, G' are coincident, i.e. G is in OE, half-

way between the planes which cut off the belt. (Art. 90.)

100. We can easily deduce from the above the position
of the centre of mass of the volume of a sector of a

sphere, the figure generated by the revolution of a circular

sector about one of the bounding radii.

Let OAC be the spherical sector generated by the

revolution of the circular sector AOB about OB. The
centre of mass is in OB (Art. 91).

Imagine the sector to be divided into an infinite

number of indefinitely small pyramids having the common
vertex 0. The centre of mass of each of these pyramids
will lie on a spherical cap ahc, generated by the revolution

of ah, the arc of a circle, of radius three-quarters that of
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ABC, and the same vertical angle AOB. Supposing the

Fig 75

mass of each pyramid to be collected at its centre of mass,

the centre of mass of the sector A00 is clearly the same as

that of the spherical cap ahc : its distance from there-

fore is equal to \{0m + Oh) or f (Oi/+ OB). If the sector

be a hemisphere, OM vanishes, and the distance from the

centre of the centre of mass of the volume of the hemi-

sphere is f of the radius.

Cor. As a spherical segment, the solid figure cut off a

sphere by a plane, is the difference between a spherical
sector and a right circular cone, its centre of mass can be

found by the method of Art. 88.

The centre of mass of the solid cut off a sphere by
two parallel planes can also be obtained, since the figure
is the difference of two spherical segments.

Ex. 1. With the same assumption as in Ex. 11, p. 135, find where

the resultant pressure acts on a triangle whose vertex is in the surface of

a liquid and whose base is parallel to the surface, but below it.

Ans. At a point whose depth below the surface is three-quarters that

of the base.

Ex. 2. Find the centre of mass of a segment of a circle.

Ans. It is in the diameter bisecting the segment, at a distance from
A y Sill a

the centre, -.^—-.—r—
, where r is the radius, and 2a the angle the

3 2a-sin2a

segment subtends at the centre.

G. 10
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Ex. 3. If a figure consist of a cone and a hemisphere on the same

base, find the height of the cone in order that the centre of mass of the

whole may be the centre of the hemisphere.

Ans. ^d times the radius of the hemisphere.

Ex. 4. Find the position of the centre of mass of a frustum of a

cone, when the radii of the faces are 4 inches and 8 inches respectively,

and the distance between them 7 inches,

Ans. In the line joining the centres of the faces at a distance of

4| inches from that of the smaller face.

Ex. 5. Find also the position of the centre of mass of the surface of

the above figure.

Ans. At a distance of 3f inches from the centre of the smaller face.

Ex. 6. From a cube is cut a tetrahedron, three of whose edges are the

edges of the cube which meet in one of the corners. Find the centre of

mass of the remainder.

Arts. The cm. is in the diagonal of the cube through that corner

from which the tetrahedron is cut off, and at a distance from that corner

equal to ^ of the diagonal.

Ex. 7. Find the centre of mass of a segment of a sphere.

Ans. It is in the diameter of the sphere at right angles to the base

of the segment and at a distance from the centre of the sphere equal to

-
.
—

:/- , where r is the radius of the sphere and h is the distance from
4 2r+h
the centre of the sphere of the plane cutting off the segment.

101. The centre of mass of a segment of a parabola.

Let BAB' be the segment, AC being the diameter

conjugate to the base BB\

Fig 76
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Divide AC into an infinite number n of indefinitely
small equal parts of which MN is a typical one, the rth.

Draw PMP', QNQ' chords parallel to BB\

Let >Sf be the focus
;
then

PM' = 4^AS.AM.

The centre of mass of the strip PP'Q'Q is in MN.
(Art. 91.)

The area PP'Q'Q lies between PP'.^IN sin BOA, and

QQ'.MN. sinBGA, and the distance of its CM. from A
lies between AM and AN\ therefore the sum of the

moments of all the strips about a line through A perpen-
dicular to AG lies between

t(PP'.MN.AMsmBGA), and ^{QQ'.MN.AN.smBGA),
i. e. between ^AS^ . sin BGA . t {AM^ . MN),

and 4^A8^ . sin BGA . 2 (AN^ . MN).

But AM = ''

A G, AN = "^ A C, and MN = —
;

??^ n n
therefore the moment of the mass of the parabola lies

between

^AS\AG\ sin BGA. 6

and 4^AS-' . AG\ sin BGA .

^ ^ •"

?i^

4.4>S^^C-.sin5a^ ,,
I.e.,

=
r . (Appendix.)
2

Similarly it can be shewn that the area of the segment

_4'ASK ACK sin BGA
3
•J

10—2
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Hence the distance of the CM. of the parabola from A

8AS^ . AG^ . sin BCA 8AS^\ AG' . sin BGA „ ,
..

Also the CM. is in AC. (Art. 91.)

102. The centre of mass of a rod of uniform thickness,

and whose density varies as the mth power of the distance

from one end.

Let AB he the rod, such that the density at any point
P varies at {APy\

PQ 8

Fig 77

Divide the rod into an infinite number n of indefinitely

small equal parts, of which PQ is a typical one, the rth.

The mass of PQ lies between

K.PQ.AP'-' and K.PQ.AQ^
where « is a constant

;
therefore the moment of the whole

rod about A lies between

1.{kPQ.AP'\AP) and 1. [kPQ , AQ\ AQ) ,

i.e. between

k{AB)
n'"^''

and kA 5"^^^ .

"^^
rn^"n

kAB"""-'
I.e. =

m + 2

Similarly it can be shewn that the mass of the rod

-^ —
. Hence the distance from A of the CM.

m-f 1

kAB'"-"' kAR"'' m + 1

m + 2
' m + 1 m + 2

.AB,
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The centres of mass of a triangle, pyramid and para-
boloid of revolution might have been obtained by methods
similar to those employed in the last two articles.

Ex. 1. Find the cm. of a tetrahedron ABCD, which is such that the

density at all points in a plane parallel to BCD is the same and propor-

tional to the distance of the plane from A.

Ans. If G is the cm. of BCD, the required point is in AG, at a

distance from A =^AG.

Ex. 2. Find the cm. of a triangular lamina ABC, when the density
at any point varies as its distance from BC.

Ans. The middle point of AD, where D bisects BG.

Ex. 3. Find the c m. of a tetrahedron ABCD, when the density at

any point is proportional to its distance from the face BCD.

Ans. In ^G, at a distance from A equal to § .AG, when G is the cm.

of the face ABC.

Ex. 4. The density of a conical shell standing on a plane horizontal

base varies as the depth below the vertex : find the dejDth of the centre

of mass. Ans. f the height of the cone.

103. Prop. When a body or any system of bodies is

in equilibrium under the action of gravity, mutual actions,

and the action of one external supporting point, the centre

of mass of the whole system, and the supporting point lie

in a vertical line.

For considering the equilibrium of the whole system,
the only external forces acting on it are, its weight acting

vertically at its centre of mass and the action of the

supporting point : but these two forces cannot maintain

equilibrium, unless their lines of action are the same,
which will not be the case, unless the centre of mass and
the supporting point are in a vertical line.

104. Prop. If a rigid body be placed in contact with

a smooth horizontal plane, it will be in equilibrium or not,

accordino' as the vertical line drawn throuo-h its centre

of mass meets the horizontal plane within the base or

not.
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(N.B. By the base is meant the polygon, without

re-entering angles, formed by joining the extreme points
of the body in contact with the plane.)

Let ABODE be the base, the point where the

vertical through G, the centre of mass, meets the plane.

6

w

^E

B

Fig 78

(i)
When lies within the base.

It is obvious that the direction, in which the weight of

the body acting along GO tends to turn it about the

side AB of the base, is such that the points 0, B, E, &c.

would move downwards if the plane were not there to

resist such motion. As the plane is there such motion is

prevented.
The same remark applies to motion about every other

side of the base. Hence the weight will not produce

any motion : and the resistances of the plane on the base

are passive forces which can only resist motion and not

produce it. The body is therefore in equilibrium.

(ii)
When lies outside the base.

In this case, the base and the point must lie on

opposite sides of one or more sides of the base.
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Let AB be such a side of the base.

Now the reaction exerted by the plane on any point
of the body touching it can only be vertically upwards,

D

w

cdJ.-

Fig 79

and its moment about AB is therefore of the same sign as

that of the weight. The als^ebraical sum of the moments
of all the forces about AB cannot therefore be zero, and

equilibrium is therefore impossible.

If a curvilinear base be regarded as the limit of a

polygonal one, with an infinite number of sides, the above

reasoning applies to it.

In a similar way it can be shewn that a body placed
on an inclined plane, sufficiently rough to prevent sliding,
will be in equilibrium, provided the vertical through the

centre of mass passes through the base, and that if it

does not, the body will topple over.

It will be seen hereafter that these propositions are

merely particular cases of more general propositions.

(Art. 123.)

Ex. 1. A right-angled triangle ABC, whose sides AB, BC are respect-

ively 5 and 6 feet long, is hung from the point A. Find the inclination

of BC to the horizon. Ans. tan~^ (f).
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Ex. 2. A plane triangle is hung with its plane horizontal by three

vertical chains from the middle points of its edges. How heavy must it

be that a 12-stone man may walk anywhere over it without tilting it?

Ans. 36 st.

Ex. 3. A circular table of weight 20 lbs, rests on three legs, which

are on the circumference, and at the corners of an equilateral triangle.

Eind the greatest weight that can be placed on any part of the table

without upsetting it. Ans. 20 lbs.

Ex. 4. A metal lamina, composed of a semicircle and an isosceles

triangle (vertical angle 2a) on the same base, is placed in a vertical

plane with its curved rim resting on a horizontal plane ; prove that the

lamina will rest in any position, provided tan a = l/sj2.

ILLUSTEATIVE EXAMPLES.

Ex. 1. If the three diagonals of an octahedron intersect in a point 0,

the centre of inertia of the octahedron coincides with that of seven

particles, one at and one at each of the angular points : the mass of

the particle at being unity, and of that at each angular point the ratio

of its distance from to the diagonal through the point.

Let ABCD be the plane containing two diagonals AOC, BOD : let EOF

Fig 80

be the other diagonal. Let us find the distance of the centre of inertia of

the octahedron from the plane ABCD. Let
Ji^

be the height of the
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pyramid, having base ABCD and vertex F, and let h^ be the height of

the pyramid having the same base and vertex E.

.'. the volume of first pyramid : volume of second=
/?i

: h^=OF : OE.

The distance of the c, i, of the octahedron from the plane ABCD

~
h-^ + ho

~
4

(Here, distances from the plane ABCD have been estimated positive

when towards F, and negative when in the opposite direction.)

The distance from ABCD of the c.i. of the seven particles

OF OE
^^^' EF~ '' EF'

, OF+OE OA + OG OB + OD
EF AC BD )

\ .

K
/ij + 7*2

h.
h^

Hence the distances of the centres of inertia of both octahedron and

the seven particles from the plane ABCD are the same: and it could

be shewn in a similar manner that their distances from the planes

BEDF, ECFA are also the same. The two points are therefore coin-

cident.

Ex. 2. Find the centre of mass of a segment cut off an ellipse by a

straight line.

Let DPE be the segment cutting the ellipse, whose semiaxes are CA,

b d

Fis El

CB. Let hpA be the auxiliary circle. Draw the ordinates DD', EE', and

let them be produced to meet the circle in d, e, respectively. Join de,
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and produce it to meet DE in T. T is in CA produced. Draw two

ordinates PP', QQ' of the ellipse indefinitely near to one another, and let

them meet DE in 31, N respectively. Produce them to meet de in m, n,

and the circle in p, q respectively.
«

PP' : pP'=CB : CA^MP' : mP';

.-. MP : mp = CB : CA;

.-. the area PQN3I : a,ie& pqnm=CB : CA.

Both elliptic and circular segments may be divided up into the same

infinite number of strips, of which PQN3I, pqnm are types. Let G be

the CM. of DPE, and g that of dpe.

The distance of G from CB

_ moment of DPE about CB~
mass of DPE

CB '

_ ^{PQmi.cp') -cA^iv<i^^^^^-GP')-
:2{PQNM) CB^. ,

S {pqnm . CP') moment of dpe about CB~
S [pqnm)

~
mass of dpe

= distance of g from CB.

The distance of G from CA

[ PP' + MP'\ CB-^ ^/ pP'-\-mP'\

CB ,.=— X distance of g from CA.

But the position of g is known (Art. 98), and therefore its distances

from CA and CB : hence the position of G is determined.

Ex. 3. Find the centre of gravity of a spherical surface, over which

the density at any point varies as the ?i"^ power of the distance from a

fixed point on the surface.

Let A be the fixed point on the surface : AOB the diameter thi'ough

it. Divide AB into an infinite number m of equal parts, of which MN is
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a typical one, the r^^. Let PP'Q'Q be a small belt cut off the spherical

surface by planes through BI, N, perpendicular to AB.

Fig 82

Area of PP'Q'Q ^-2Tr . AO . MN (Art. 99), and mass of area PP'Q'Q
2irA() . 2IX . kAP^^, ultimately (where k is a constant),

n n
n

r2

= 2Tr. AO. 3IN . K . AB^ . AM^ = ttk . {ABy^+-
—
vi

whole mass of the surface

n n n n

^+1

= TTK . AB''+^-

m^
j+i

2
+ 1

Also the moment of the mass of PP'Q'Q about the tangent plane at A

^+1
n

= TTK . ^B"+2 .
^^

. AM = TTK . JB»+3 . ^^ ;

m- VI-

the moment of the whole mass

AB''+^= TTK .

h'



156 STATICS.

.-. the distance of the centre of gravity from A

TT/C .
'- TTK ,

h^
n + 2

n + 4:

AB.

n
+ 1

Ex. 4. A bowl of uniform thin material in the form of a segment of

a sphere is closed by a circular lid of the same material and thickness

which is hinged across a diameter. If it be placed on a smooth horizontal

plane with one half of the lid turned back over the other half, shew that

the plane of the lid will make with the horizontal plane an angle

tan~i
I
— tan « )

5
" being the angle any radius of the lid subtends at

the centre of the sphere of which the bowl is part.

Let EOC be the diameter about which the lid turns : BO the radius

at right angles to it. Let 0' be the centre of the sphere, and let O'O

Fig. 83

meet the surface of the bowl in H. The centre of mass of the bowl

is at G' in OH, such that OG'=G'H; that of the doubled lid is at G in

WB
OB, such that 0G =

Stt
Draw O'A vertically downwards, let 6 be the

angle HO'A, which is the inclination of the lid to the horizontal. A is

the point where the bowl touches the horizontal plane. Let r= the radius

of the bowl. The centre of mass of the whole body must be vertically

above A. (Art. 103.)
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The distance of G' from O'A = O'G' . sin d^{0'H- G'H) sin 8

[ r-r cos a\ . „ r ,^ x •
/,

z= ( r
^
—

J
sm ^ = -

(1 + cos a) sin 0.

The distance of G from O'A = - 00' sin d^-OG cos d

, 4r sin a— - r cos a . sm d + -^^ cos 6.

,. 2Trr- (1
- cos a) . ^ (1 + cos a) sin ^

= irr- sm- a (
- r cos a sin ^

4r sin a

Stt
cos ^

)^

• /, • ^ 4 sin a
,*. sin 6= - cos a sui -i ^^ cos

;

tan 6 —
4 sin a 4

,
a

6n 1 + cosa OTT 2

Ex. 5. A right circular cone rests with its elliptic base on a smooth

horizontal table. A string fastened to the vertex and the other extremity of

the longest generator passes round a smooth pulley above the cone, so

Fig. 84
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that all parts of the string except those in contact with the pulley are

vertical. If the string become gradually contracted by dampness and tend

to lift the cone, shew that the end of the shortest generator will remain on

the table provided the diameter of the pulley be less than three times the

semi-axis major of the elliptic base.

Let AOB be the major axis of the base, the centre : let VA be the

longest generator, VB the shortest. Join VO, and take VG= ^VO. G is

the CBi. of the cone. Let G be the middle point of VA. Draw CK^

GN, VM perpendicular to the plane. The forces acting on the cone are

its weight W vertically downwards at G, the tensions T, T of the string

vertically upwards at V and A, and the reaction of the plane on the base.

We may replace the tensions by 2T upwards at G.

Now the motion is produced by 2r and W, the resistance of the plane

being a passive force only resists motion. It is obvious then that the

cone will tend to turn about A ov B according as G is to right or left of G,

i.e. according as AK is > or < AN,

AM. .^ Oif
I.e. „ — IS > or < A0 + -^,

AM. ,^ AM-AG
I.e. „ -^

IS > or < A0-] ^ ,

i.e. ,, .41/ is > or < SAO.

EXAMPLES.

1. ABG is a triangle, D, E, F are the middle points of its sides,

shew that the centre of gravity of the perimeter of ABG coincides with

the centre of the circle inscribed in DEF.

2. ABGD is any plane quadrilateral figure, and a, h, c, d are respec-

tively the centres of gravity of the triangles BGD, GDA, DAB, ABG;
shew that the quadrilateral abed is similar to ABGD.

3. Prove that the centre of gravity of a wedge, bounded by two simi-

lar, equal, and parallel triangular faces and three rectangular faces, coin-

cides with that of six equal particles placed at its angular points.

4. A thin uniform wire is bent into the form of a triangle ABG, and

heavy particles of weight P, Q, R are placed at the angular points: prove

that if the centre of mass of the particles coincides with that of the wire

P : Q : R = h + c : c + a : a + h.
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5. The perpendiculars from the angles A, B, C meet the sides of a

triangle in P, Q, R : prove that the centre of gravity of six particles pro-

portional respectively to sin^^, sin-i?, sin'-'C, cos^A, cos-B, cos-C, placed

at A, B, G, P, Q, R, coincides with that of the triangle PQR.

6. A plane quadrilateral ABCD is bisected by the diagonal AC, and

the other diagonal divides AC into two parts in the ratio p '. q; shew

that the centre of gravity of the quadrilateral lies in A C and divides it

into two parts in the ratio 2p + q : }) + 2q.

7. A heavy elliptical ring, whose eccentricity is f, is suspended with

its plane horizontal by three vertical strings, one of which is attached to

the end of the minor axis, one to the end of the major axis, and one to

the end of a latus rectum. Prove that the tensions respectively are
:J,

^, and T% of the weight of the ring.

8. A triangular table is supported by three legs at the middle jDoints

of its sides. A given weight is placed upon it in any position. If weights

P, Q, R placed in succession at its angular points will just upset it, prove

that P+Q +R is constant.

9. A uniform wire is bent into the form of a circular arc and its

two bounding radii, the arc being greater than a semicircle. Shew that

if the acute angle between these bounding radii be tan~^ ^, the centre of

gravity of the whole wire is at the centre.

10. A triangular lamina is supported at its three angular points and

a weight equal to that of the triangle is placed upon it ;
find the position

of the weight if the pressures on the points of support are proportional

to 4a + b + c, a + 4:b + c, a + h + 4:C, where a, b, c are the lengths of the sides

of the triangle,

11. Particles are placed at the corners of a tetrahedron respectively

proportional to the opposite faces : prove that their centre of gravity is

at the centre of the sphere inscribed in the tetrahedi-on.

12. ABCD is a quadrilateral whose diagonals intersect in 0. Parallel

forces act at the middle points of AB, BC, CD, DA respectively propor-

tional to the areas AOB, BOC, COD, DOA. Prove that the centre of

parallel forces is at the fourth angular point of the parallelogram de-

scribed on OE, OF as adjacent sides, where E, F are the middle points

of the diagonals of the quadrilateral.
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13. A solid, consisting of a hemisphere and a right circular cone on

opposite sides of the same circular base, is in equilibrium, when placed

with any point of the hemisphere on a horizontal plane. If the whole

solid can just be included in the sphere of which the hemisphere in

question is half, prove that the density of the cone is three times that

of the hemisphere.

14. If three uniform rods of the same material but of different thick-

nesses be formed into a triangle ABC, and if their centre of gravity be

at the orthocentre of this triangle, prove that their thicknesses must be

proportional to

cos{B-0)-Sco&A, cos{C-A)-3cosB, cos{A-B) -ScosC.

15. The corners of a pyramid are cut off by planes parallel to the

opposite sides: if the pieces cut off be of equal weight, prove that the

centre of gravity of the remainder will coincide with that of the pyramid.

16. Two uniform heavy rods, AB, BC are rigidly united at B, the

rods are then hung up by the end A ;
shew that BC will be horizontal if

sin C=\j2 .sin|2>.

17. A uniform triangular lamina of weight W is suspended from a

fixed point by means of strings attached to its angular points : shew

that, unless its plane be vertical, the tensions of the strings are

W.l^

and similar expressions ; Z^, U, Zg being the lengths of the strings, and

a, b, c the sides of the triangle.

18. Find the centre of gravity of a solid sector of a sphere, in which

the density at any point varies as the cube of its distance from the centre.

19. A horizontal rod, the ends of which are on two inclined planes,

is in equilibrium : if a, j8
be the inclinations of the planes, prove that the

centre of gravity of the rod divides it into two parts in the ratio of tan a

to tan /3.

20. Find the centre of mass of the segment of a spheroid cut off by

a plane perj^endicular to the axis.

21. Shew how to determine the position of the centre of gravity of

the area contained between two concentric, similar, and similarly situated

ellipses and two straight lines drawn from the common centre.
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22. If from a triangle ABC three equal triangles ARQ, BPR, CQP
be cut off, the centres of inertia of the triangles ABC, PQR will be

coincident.

23. From a uniform circular disc, radius a, are cut two circular

holes, radii b and c, and centres at distances /3, y from that of the disc,

and distance 8 from one another. Find where to cut the hole of radius

s/bc, so that the centre of mass of the remainder may be the centre of

the disc : if the distance of the centre of this hole from that of the disc

be r, shew that

r^+ S^^= {b^ +
c^)(^^^+'fj.

24. A rectangular sheet of stiff pajDer, whose length is to its breadth

as \/2 is to 1, lies on a horizontal table with its longer sides perpendicular

to the edge and projecting over it. The corners on the table are then

doubled over symmetrically so that the creases pass through the middle

point of the side joining the corners and make angles of 45*^ with it.

The paper is then on the point of falling over
;
shew that it had originally

If of its length on the table.

25. ABC is a triangle; APD, BPE, CPF the perpendiculars from it

on opposite sides. Prove that the resultant of six equal parallel forces,

acting at the middle points of the sides of the triangle and of lines PA,

PB, PC, passes through the centre of the circle which goes through all

of these middle points.

26. The inscribed circle of a triangle ABC touches the sides in D, E,

F. Prove that the centre of gravity of weights proportional to BC, CA,

AB, placed at A, B, C respectively, coincides with the centre of gravity

of the same weights placed at D, E, F respectively.

27. Find the centre of gravity of that part of the circumscribing cu'cle

of a triangle which lies outside the nine-points circle
;
and shew that its

distance from the centre of the circumscribing circle is nine times that

of the centre of gravity of the triangle.

28. A, B, C, D, E, F are six equal particles at the angles of any

plane hexagon, and a, b, c, d, e, f are the centres of gravity respectively

of ABC, BCD, CDE, DEF, EFA, and FAB. Shew that the opposite

sides and angles of the hexagon abcdef are equal, and that the lines

joining opposite angles pass through one point which is the centre of

gravity of the particles A, B, C, D, E, F.

G. 11
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29. Find the centre of mass of a solid hemisphere whose density

varies inversely as the distance from the centre.

30. A circle whose diameter is equal to the latus rectum of a parabola

has double contact with it. Find the position of the centre of mass of

the area bounded by the two curves.

31. A triangular lamina ABC hangs at rest from the point A : if

AB= c, AG— h, and S represent the area of the lamina, prove that the

tangent of the inclination of BG to the vertical is equal to 4S/(&2^c^).

32. A smooth solid hemisphere rests with its flat base against a

vertical wall and is supported by a string, one end of which is fastened

to the vertex of the hemisphere and the other to a point in the wall.

Prove that the inclination of the string to the vertical lies between

tan~i (ff) and cos~i(f).

33. Find the centre of gravity of the surface of the octant of a

sphere.

34. From considerations of symmetry and from the fact that the

centre of gravity of the whole lies in the line joining those of any two

parts, deduce the position of the centre of gravity of a circular arc.

35. If the opposite edges of a tetrahedron are equal, prove that the

centre of gravity of its six edges and the centre of gravity of its four

faces both coincide with the centre of gravity of its volume.

36. If A, B, C be three fixed points, and P any point on a circle

whose centre is 0, shew that

AP^ . ABOG+ BP^ . AGOA + GP^ . A^ OB = constant.

37. From an external point an enveloping cone is drawn to a sphere ;

prove that the centre of gravity of a uniform solid bounded by the sphere

and cone is at a distance AN^I4:GN from the centre of the sphere, where

GA is the radius of the sphere from the centre G drawn towards the

outer point and cutting the plane of contact in N.

38. The centre of gravity of a solid hexahedron whose faces are

triangles is the same as that of five equal weights placed at the corners,

and of an equal negative weight placed at the point where the line

forming the two trihedral angles cuts the plane of the other three

angles.
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39. A pack of cards is laid on a table and each projects in direction

of the length of the pack beyond the one below it : if each projects as

far as possible, prove that the distance between the extremities of suc-

cessive cards will form a harmonical progression.

40. Prove that the sum of the squares of the sides of the triangle,

formed by joining the feet of the perpendiculars, let fall from a point

inside a given triangle on the sides, has its least possible value, when
the point is the centre of mass of three particles, at the angles of the

given triangle, whose masses are proportional to the squares of the

opposite sides.

41. A uniform circular disc of weight nW has a heavy particle of

weight W attached to a point on its rim. If the disc be suspended from

a point A on its rim, B is the lowest point : and if suspended from B,

A is the lowest point. Shew that the angle subtended by AB at the

centre is 2 sec~i 2
(71+ 1).

42. A thin shell is bounded by two similar surfaces; any closed

curve being drawn on the surface, prove that the centre of inertia of the

included portion of the shell, and the centre of inertia of the solid

formed by drawing lines to the boundary from the centre of similitude,

are in a line with the centre of similitude and at distances from it which

are in the ratio 4:3.

43. A frustum is cut from a right cone by a plane bisecting the axis

and parallel to the base. Shew that it will rest with its slant side on a

horizontal table if the height of the cone bear to the diameter of the

base a greater ratio than ^y7 : \/17.

44. Four weights are placed at four fixed points in space, the sum
of two of the weights being given and also the sum of the other two ;

prove that their centre of mass lies on a fixed plane, and within a

certain parallelogram in that plane.

45. A sphere, radius (?'),
rests on three points at equal distances (a)

on a horizontal plane. If one of those points be depressed so that the

plane containing the three points is inclined at an angle {6) to the

horizon, the sphere will roll off if d exceed sin~i(a/r\/3), but if the

point be raised the sphere will roll off if d exceed sin"^ {a/\/3 (4?--
-

a-)}.

46. A hemispherical bowl of radius r rests on a smooth horizontal

table, and partly inside it rests a rod of length 21, of weight equal that

of the bowl. Shew that the position of equihbrium is given by

^sin (a + /S)=r sina= - 2?* cos (a +2/3),

11—2
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where a is the inclination of the base of the hemisphere to the horizon,

and 2]3 is the angle subtended at the centre by the part of the rod within

the bowl.

47. Two equal segments are cut from a hollow sphere, and are hung

up from a point by two equal strings attached to their rims, so that

their convexities are outwards. Prove that, if the lengths of the strings

be equal to the diameter of either rim, they are inclined to each other

at an angle —2 tan"^ (^ tan |a), where 2a is the angle subtended by either

segment at the centre of the sphere.

48. A cone of vertical angle 2a is supported by a string passing over

two smooth puUies in the same horizontal line, the string being attached

to the vertex and to a point in the circumference of the base. Prove

that in the position of equilibrium sin (a + ^ + 0)=| cos a sin ^ cos 0,

where 6 is the inclination of either portion of the string to the horizon,

and is the angle the base of the cone makes with the vertical.

49. The top of a right cone, semi-vertical angle a, cut oS by a plane

making an angle /3
with the axis, is placed on a perfectly rough inclined

plane with the major axis of the base along a line of greatest slope of

the plane; in this position the cone is on the point of toppling over:

prove that the tangent of the inclination of the plane to the horizon

has one of the values
4 sin 2a ± sin 2/3

cos2a-cos2j8

50. A ring is made up of three arcs, BC, CA, AB, of uniform section,

but of different metals: uniform rods OA, OB, OC, made of the same

metals as BC, CA, AB respectively, but with sectional area double that of

the arcs, connect the points A, B, C with the centre 0. Find the angles

a, jS, 7 which BC, CA, AB subtend at 0, in order that the centre of

gravity of the whole may be at 0, and shew that, if w^ , Wo, Wg be the

weights per unit length of BC, CA, and AB respectively,

( Wj
-

Wo) tan - tan
^ + (wq

-
^3) tan ^ tan ^ + (W3

-
Wg) tan ^ tan „ = 0.



CHAPTER V.

Fkiction.

105. We have hitherto supposed, that the action

exerted by one surface in contact with another is neces-

sarily along the common normal at the point of contact, in

other words that the surfaces are perfectly smootJi. We
have however no experience of bodies except such as do,

in certain cases, exert on other bodies forces inclined to

the common normal at the point of contact, in other words
all bodies we are acquainted with are more or less rough.

Suppose the following experiment to be made. Take a

mass of some material having a plane surface, and fix it so

that this surface is horizontal : on it place a portion of

some solid material. Now it will be found that, whatever
be the materials used, and however highly their surfaces

in contact may be polished and lubricated, it is always

possible to turn the horizontal surface through a finite

angle without the upper bod}^ slippi^ig, though it may
topple over.

Let W be the weight of the upper body, a the inclina-

tion to the horizon of the plane on which it rests : then

Fi^.SS
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resolving W into W cos a perpendicular to the plane and
TTsin a along the plane, we infer that as W is counteracted

by the action of the plane on the body, this action must
consist of two components Il{= W cos a) along the common
normal, and F (= TTsina) along the plane. The latter

force is called the friction. We see also that F/R = tan a.

When the body is just about to slide the friction exerted

is said to be the limiting friction.

106. The laws relating to statical friction are :

(i) Friction always acts in the direction opposite to that,

in which the point of the surface acted upon, would move,

relatively to the other surface, if there were no friction.

(ii) The magnitude is always the least possible required

for preserving equilibrium, provided this amount does not

exceed the limiting friction.

These laws are axiomatic and are particular cases of

the general axiom that a Passive force, being entirely
due to the tendency to inotion caused by Active forces, only
resists such tendency : its direction therefore is always
directly opposite to the motion resisted and its magnitude
never exceeds the minimum required for preserving equi-

librium, and is ifpossible equal to this minimum.

107. Let us now make another experiment. As before

take a plane surface of some material or other, and on it

place blocks of different weights, shapes and sizes, but all

made of the same material. If now the plane be gradually
inclined in any direction more and more to the horizon, it

will be found that each and every block, no matter what
face it has in contact with the plane, begins to slide as

soon as a certain inclination of the plane to the horizon is

exceeded, but not before
; also, that when it does slide, the

increase per second in its velocity is constant. This angle

though constant for the same pair of materials varies con-

siderably for different pairs. Any block may topple over

before the others slide.



FRICTION. 167

Let us see what inferences can be drawn from this

experiment.

Let a be the inclination of the plane to the horizon,

when all the blocks are just about to slide: the friction

exerted is in each case limiting, and since FjR = tan a
,

(Art. 105), the ratio of the limiting friction to the normal

pressure is the same for all the blocks. Also since the

weights and therefore the normal pressures differ, this

ratio is independent of the normal pressure. Since a is

the same whatever face of a block rests on the plane, the

ratio F:R is independent of the area of the surfaces in

contact. Since the increase per second in the velocity of

a block is constant, the force on it is constant, i.e. the

friction is independent of the velocity.

The above experiment confirms the so-called Laws of

limiting and dynamical friction.

These laws are

(i) So long as the substances in contact are unaltered,

the ratio of the limiting or dynamical friction to the normal

pressure is independent of the magnitude of the latter.

(ii) So long as the substances in contact are unaltered,

the friction is independent of the area of the surfaces in

contact.

(iii) When motion takes place, the dynamical friction
is independent of the relative velocity of the points in contact.

108. These laws must not be regarded as rigorously true in all cir-

cumstances, but only as more or less approximate expressions of the

results obtained from the experiments of Coulomb and Morin, who enun-

ciated them. More recent investigations would seem to shew, that in

certain circumstances they are very far indeed from expressing the

amount of friction exerted.

According to a report, read before the Institution of Mechanical En-

gineers by Captain Douglas Galton, on experiments made by him on the

application of brakes to locomotive-wheels, the friction diminishes as the

velocity increases beyond a certain limit, and is also less after it has been

exerted for some time than when first applied. In the experiments of
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Morin and Galton the surfaces in contact were not lubricated in any-

way. Before the same Institution in 1883, Mr Beauchamp Tower read a

report on some experiments made by himself on a thoroughly lubricated

journal revolving in bearings. These experiments shewed that in certain

circumstances the friction per square inch was nearly independent of the

normal pressure and that it increased with the velocity of revolution.

A rise in temperature was accompanied by a reduction in the friction,

though this might be caused by the lubricant becoming more efficient.

Professor Thurston states that from his own experiments, he inferred

that the friction at first diminished as the velocity increased and then

increased again.

As however we are only concerned with statical friction we may take

laws
(i) and (ii) as giving fairly accurately the friction in the cases which

we shall have to consider.

109. Def. The ratio of the limitiDg friction to the
normal pressure, which ratio we see by laws (i) and (ii) is

constant, is called the coefficient offriction for the pair of

materials in contact. The angle the total action makes
with the common normal at the point of contact is termed
the angle of friction, provided the limiting friction is

exerted.

Hence (Art. 105) the coefficient of friction is equal to

the tangent of the angle of friction.

The coefficient of dynamical frictio7i is the ratio of the
friction to the normal pressure when motion is actually

taking place. It is found by experiment to be less than
the corresponding coefficient of statical friction, in other

words, there is more resistance when motion is just about
to take place than when it is actually taking place.

Ex. 1. If the smallest force which will move a given block weighing
3 lbs. along a given horizontal plane be \/31bs. ; find the greatest angle
at which the plane may be inclined to the horizon without the block

sliding. A71S. 30^.

Ex. 2. If a weight of 14 lbs., when placed on a rough plane inclined

at an angle of 60^ to the horizon, slides down, unless a force of at least

7 lbs. acts on it up the plane, what is the coefficient of friction? Ans. -73.
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Ex. 3. If a weight of 4 lbs. is just on the point of slipping down a

rough plane, inclined at an angle of 45** to the horizon, when a force of

2 lbs. acts up the plane, find the least force which will move the weight

up the plane, when the inclination is 30" to the horizon. Ans. 3*01 lbs.

Ex. 4. Weights of 4 and 5 lbs. respectively, connected by a hght rigid

rod, are placed on a rough inclined plane, with the rod parallel to a line

of greatest slope. If the coefficient of friction between the 4 lb. weight

and the plane be -6 and that between the other weight and the plane '42,

find the greatest inclination of the plane to the horizon, consistent with

equilibrium. Ans. tan~^ 'o.

Ex. 5. Find the greatest angle at which a plane may be inclined to

the horizon so that three equal weights whose coefficients of friction are

•5, "6, '7, respectively, may when connected by strings rest on it without

sliding. The weights are supposed placed along a line of greatest slope

so that each is rougher than the one next below it. Ans. tan"^ {'&).

Ex. 6. A uniform ladder rests in limiting equilibrium, with its lower

end in contact with a rough horizontal plane and its upper end with a

smooth vertical wall. If X be the angle of friction and a the angle the

ladder makes with the vertical, prove that tan a= 2 tan X.

Ex. 7. If everything is as in Ex. 6, except that the wall is as rough as

the ground, prove that a = 2X.

Ex. 8. Two particles of equal weight and connected by a light string

rest in limiting equilibrum on the arc of a rough vertical circle; prove
that the angle the line joining them makes with the horizontal is equal
to the angle of friction.

Ex. 9. A body is resting on a rough inclined plane of inclination a,

the angle of friction being which is greater than a. Shew that the

ratio of the least force which will drag the body up the plane to the least

force which will drag it down is sin (0 + a) : sin (0
-

a).

Ex. 10. One end of a uniform rod is on a rough inclined plane to

which the rod is perpendicular : at the other end is aj)pHed a force parallel

to the plane : if the rod be in equilibrium, prove that the coefficient of

friction cannot be less than half the tangent of the plane's inclination.

110. Def. Let a cone be described, having its vertex

at the point of contact of the two surfaces, the common
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normal for axis, and the angle of friction as semi-vertical

angle. This cone is called the Cone of Friction.

The Laws of statical friction, given in Arts. 106, 7,

are all included in the following statement. If all the

other forces, external and internal, acting on the point of
contact he compounded into a single resultant R, the action

of the surface in contact will he equal and opposite to R,
whatever he the latter's magnitude or direction, provided
its line of action does not lie without the cone offriction.

Hence a body in contact with rough surfaces will be

in equilibrium, provided that to insure its being so, it is

not necessary to assume that the total action at any point
of contact lies outside the corresponding cone of friction.

It should be noticed that the cone of friction is always
drawn so that its concavity is towards the body, the action

on which we are considering.

111.* To find the relation between the tensions at the

ends of a light string stretched over a rough surface, and

on the point of slipping.

Let APQRZ be the string, which is on the point of

slipping from Z to A.
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Let \ be the angle of friction, fju
the coefficient of

friction.

Let the points A,B,...P, Q,R,...Y, Z he taken on the

string so that the ultimately indefinitely small angles be-
tween the tangents at consecutive points are each equal
to 0.

Let us consider a small portion, PQ, of the string.
It is kept in equilibrium by the tensions at P and Q
and the resultant action of the surface.

As in Art. 81, construct a force-diagram Oab...pqr...yz,
such that Oa, Oh,...Op, Oq, Or,...Oij, Oz represent the

Fig.87

tensions at A, B,...P, Q, R,...Y, Z respectively. Join

ah, bc,...pq, qr,...yz. These last will represent the re-

sultant actions of the surface on AB, BC,...PQ, QR,...ZY
respectively.

As the portion PQ is on the point of slipping from

Q to P, the resultant action on it makes with the normal
at either P or Q an angle differing from X by an in-

definitely small quantity, and on that side of the normal

by which it will most assist the tension at Q.

Hence in each of the triangles Oah, Opq, &c. the angles
at are equal, and the angles Oah, Opq, &c. are each equal
to 7r/2

— X ultimately ;
the triangles therefore are all

similar to one another.

Let n be the infinitely large number of portions AB,
&c. of the string. Let n6 = a, a finite angle.
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Then Oa = Ob.'''^^-^\
cosX

cos (X — 6)
op = oq

^—-—'
,'

cos X,

&c. &c.

.-. Oa = Oz /^Qs(^-^)
^^^ 0^ ^cos ^ + sin ^ tan XY

;

V COS X /

.'. log Oa = log 0^ + ^ log (1
— sin'' 6} -}- n log (1+ fJb

tan ^)

=
log 0<2^ — I (

?^ sin^ ^ + « sin^ ^ + &c.
J

^ yLt^?^ tan^ 6 „

+ /Lt?i
tan 6 — H &c.

=
log Oz + ycta ultimately ;

.-. Oa=Oz . €«'"
;

.'. tension at ^4. = e'"'^ . tension at Z.

If the string be in one plane, the curve ahcd...z will

be a plane one, and as the tangent at every point makes
a constant angle with the line joining the point with 0,
the curve is an equiangular spiral. The ratio of Oa to

Oz might therefore be obtained from the known properties
of that curve.

If the string be not in one plane, the curve ahc...

will not be a plane one
;

it can however be made so,

without altering the distance of any point from 0, by
turning each of the triangles Oah, Ohc, &c. about a

side terminating in 0, until they are all in one plane,
^^'hen the curve becomes an equiangular spiral, and the

ratio of Oa to Oz can be obtained as suggested above.

112.* We shall sometimes be required to solve problems
of the following kind. A system of bodies is in equilibrium
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under certain conditions : a gradual change occurs in one

or more of these conditions—e.g. the coefficient of friction

at one or more points of contact of the bodies is gradually
diminished, some external force is gradually altered in

magnitude or direction, or the position of one of the bodies

is gradually altered. When this gradual change reaches

a certain stage equilibrium is no longer possible, and it

is required to ascertain the way in which equilibrium is

broken, in other words, the nature of the initial motion of

the different bodies. The actual way in which equilibrium
is broken must satisfy the following conditions. The
various forces acting on the different bodies, when such

a motion is about to take place, must be able to adapt
themselves so as to satisfy the necessary conditions of

equilibrium, without in any way violating the laws re-

lating to passive forces : they must also be incapable of

satisfying the necessary conditions of equilibrium, if the

change in the initial conditions increase still further.

We shall generally proceed by considering the different

ways in which it is conceivable equilibrium might be

broken, without violating the geometrical conditions. If

only one of these satisfies the above conditions, it is the

way required ;
if more than one satisfy it, it is beyond the

limits of this treatise to obtain a solution of the problem.

The following rule will often enable us to solve such

problems. If it is inconceivable that equilibrium can be

broken, except hy one of the bodies either turning about or

sliding past a point of contact luith another body, the

former motion luill actually take place, provided it does not

involve the assumption that the total action at the point in

question lies outside the cone offriction.

This rule is a deduction from the axiomatic law re-

lating to passive forces (Art. lOG). For if we suppose the

body connected with the other body at the point of con-

tact by a smooth joint, it can only turn about that point.
If now motion be on the point of taking place, the first

body will be about to turn about the joint, which will
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exert some action on it. If this action does not necessarily
lie outside the cone of friction, it could be exerted at the

point of contact if no joint existed, i.e. the motion is the

same without the joint as with. On the other hand, if

the action at the joint be outside the cone of friction there,

it could not be exerted without the joint, i.e. equilibrium
is about to be broken by the body sliding past the point
of contact in question. When it is necessary to assume

that the action at the joint actually lies along a generator
of the friction-cone, the question cannot be solved by the

above rule, as it shews that slipping is about to occur at

the point at the same instant as rolling.

Exs. 5—8, 10—12 are illustrative of this principle and should be

studied attentively,

ILLUSTEATIVE EXAMPLES.

Ex. 1. A uniform rod MN rests with its ends in two fixed straight

grooves OA, OB, in the same vertical plane, and making angles a, /3 with

the horizon: prove that, when the end M is on the point of slipping

down AO, the tangent of the inclination of MN to the horizon is

sin (a
-

j3
-

2e)

2 sin
(jS+ e) sin (a

-
e)

*

Let 6 be the inclination of MN to the horizon, when 31 is on the

point of slipping down AO.

Draw Mm, Nn, normals to OA, OB, respectively. Since the point 31

is on the point of moving down A 0, the limiting friction is exerted at 31

in the direction 31A, and the direction of the total action of OA on the

rod makes the angle e with Ifm, on the side towards A.
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Similarly, because N is on the point of slipping np OB, the total

action of OB on the rod makes the angle e with Nn on the side to-

wards 0.

Let the lines of action of the forces on MN at M and N meet in H
then, (Art. 61), H is vertically above G, the middle point of the rod.

Join HG.

BIG : G^= sin 3IHG : sin HMG= sin (a
-

e) : sin
f'^

+ d-a + eY,

also NG : GH= sinNHG : sin GNH=sm (^ + e) : sin ^ - -
/3 + eV,

.-. sin(a-e) : cos (a- e-^) = sin (/3 + e) : cos(/3 + e + ^).

Hence we obtain tan 6 —- z--.—y—^——.—— r .

2 sm [a
—

e). sm (j3 + e)

Ex. 2. A glass rod is balanced partly in and partly out of a cylindrical

tumbler with the lower end resting against the vertical side of the tumbler.

If a and j8 are the greatest and least angles which the rod can make with

the vertical, prove that the angle of friction, X, is

sin^ a - sin^ /3Atan-i
sin2 a cos a + sin^

j3
cos

j3

*

^
Fig.89

Let AB be the rod, G its centre of mass. Let G be the point of the

edge of the tumbler on which AB rests. Draw AD normal to the tumbler

at A and CE perpendicular to the rod at C.
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(i)
When AB makes the smallest possible angle with the vertical, and

is therefore on the point of slipping into the tumbler.

Since A is on the point of slipping down, the action there on AB is

in the direction AH, which makes the angle X with AD on the side

towards C.

Similarly, the action at G on the, rod is in the direction CK, which

makes the angle \ with CE, on the side away from A.

Let KC andAH meet in H, which must therefore be vertically below G,

Join GH. Let a be the diameter of the tumbler, and let AG = c.

AG : AH=smAHG : sin^GiJ=cosX : sin^S,

and AH :AG= 8inAGH: smAHG= cos\ : sin(2X + j3);

.-. AG :AC=cos^\ : sin/3 . sin (,8+2X),

. •. c: a cosec
j8
= cos^ X : sin

j3 . sin
(j3 + 2X).

(ii) When AB makes the greatest possible angle with the vertical and

is therefore on the point of slipping out of the tumbler.

By reasoning as before, we should have AH and CK on the sides of

AD and GE respectively, opposite to those they were on in the first case,

and we should arrive at the result obtained there, except that for /3
we

must write a, and for X,
- X.

The result would therefore be

c : a cosec a — cos^ X : sin a . sin (a
-
2X) ;

.*. eliminating c and a, we have

sin2 ^ sin
(/3 + 2X) = sin2 a sin (a

-
2X) ;

sin^ a - sin^ B
.
•

. tan 2X = -r-i, .-s
'

^ .

sm-^ a cos a + sm^ ^ cos p

) Ex. 3. A uniform rectangular board ABCD rests with the corner A

against a rough vertical wall and its side BG on a, smooth peg, the plane

of the board being vertical and perpendicular to that of the wall. Shew

that, without disturbing the equilibrium, the peg may be moved through a

space fi cos a {a cos a + b sin a) along the side with which it is in contact,

provided /x do not exceed a certain value : a being the angle BG makes

with the wall, and a, b the lengths of AB, BG respectively.

Let G be the intersection of diagonals, i. e. the centre of mass of the

board.

Let P be a position of the peg when there is equilibrium.
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The forces acting on the board are, its weight vertically downwards

Fig.90

through G, the reaction of the peg through P and at right angles to BC,
and the reaction of the wall through A .

The necessary and sufficient condition of equilibrium is that these

three forces should meet in a point, as the magnitudes of the reactions at

P and A will adapt themselves to secure equilibrium, if the above con-

dition holds.

Let the first two forces meet in A'; join AK, which is therefore the

direction of the reaction of the wall.

But AK is not a possible direction of the reaction at ^, if it makes

with the normal to the wall an angle greater than tan"^ /i.

Draw AE and AF making with the normal on either side of it the

angle tan~i fi, and meeting GK in E and F. Draw EM, FN perpendicular

to BC.

The condition of equilibrium is then that K should lie between E and

F, i. e. that P should lie between 31 and jV. We may therefore, without

disturbing the equilibrium of the board, move the peg through the space
MN along BC.

And 2IN=EF cos a = 2fx cos a x horizontal distance of G from wall

— ficosa {a cos a + b sin a) .

We have assumed above that M and N are both between B and C: if

either lies beyond J5 or C, as the peg cannot be moved oft' the board with-

out disturbing the equilibrium, it can only be moved along that part of

MN which lies between B and C. It is obvious that if
/ul
be greater than

a certain value, either 31 or N will not lie between B and C.

G. 12
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^ Ex. 4. If one cord of a sash window breaks, find the coefficient of

friction of the sash in order that the other weight may still support the

window.

Let ABCD be the window, TFits weight acting at G its centre of mass.

Fig.9l

We assume that the window fits loosely in the sash, so that there will

be contact at only one point on each side; these will be A and G

respectively.

The unbroken cord at B supplies a force |TF vertically upwards; the

resultant of this and W is .|TF vertically downwards at A. Hence in

order that equilibrium may be possible, the action at G must be along

CA, i. e. the coefficient of friction at G must be not less than tan^CD.

Ex.. 5.* A right circular cone, vertical angle 2a, rests with its base on

a rough horizontal plane : a string is attached to the vertex and pulled in

a horizontal direction with a gradually increasing force : determine how
the equilibrium will be broken.

Let VAB be a vertical section of the cone containing the direction of



FRICTION. 179

the string. Let T be the tension of the string when equilibrium is about

to be broken, and IV the weight of the cone.

The different ways in which it is conceivable equilibrium may be

about to be broken are

(1) the cone being lifted bodily from the plane,

(2) the cone tilting, with one point of the base resting on the plane,

(3) the cone sliding along the plane.

(1) is impossible, as in that case the cone would be in equilibrium

under the action of W and T.

If (2) take place, the cone is in equiUbrium under the action of W, T,

and the reaction of the plane at the point of contact, which must there-

fore be A
;

also the action at A must pass through V, i. e. along A V.

This is only possible when the angle ^F makes with the vertical, i.e. a, is

less than the angle of friction (X). If, therefore, a be < X, (2) takes place,

(Art. 112) : if a be > X, (3) occurs.

Ex. 6.* A uniform beam AB lies horizontally upon two others at

points A and C ; prove that the least horizontal force applied at J5, in a

direction perpendicular to BA which is able to move the beam, is the less

of the two forces fxlV and - -
,
where AB= 2a, AC= h, Tr= weight

2a -b 2

of beam, and ju
= coefficient of friction.

The vertical pressures at A and C are W .
—^ and W .

-
respectively.

B

Fig.93

The maximum frictions that can be exerted at A and C are therefore

fiW . and fiW .
-
respectively.

The frictions act horizontally and the maximum friction at either

point is exerted, only when motion is about to occur at the corresponding

point. The horizontal force ai)j)lied at B is gradually increased until

equilibrium is just about to be broken : it is required to find its maximum

value, P.

12 2
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Let us suppose that this maximum force P is exerted, and let us first

see whether we obtain consistent results by supposing the rod just about

to turn round A.

In this case as C is about to move at right angles to AB in P's

direction, the friction there is the maximum and acts in the opposite

direction to P, so that the friction at A must be in the same direction as P.

Let F be the friction exerted at A.

Taking moments about A and C for the equilibrium of the rod, we

have the equations

P.2a=
iut.W.^.b,

P.{2a-b) = F.b;

{2a
-

h)
.'. F=fjiW

2b

We have shewn (Art. 112) that the rod will turn about A, provided it

is not necessary to assume the friction there greater than the maximum ;

therefore the rod turns about A or not, according as F or fxW— — is

b-a . ^^^ b-a .>ixW
2a -b> ^^ • ~r~ '

i-6- ^^ /*^^ o::
—

i.
^^

If then aW. „—% is > ^^ the rod will turn about A as soon as P ex-
2a -b 2

eeeds -— .

If iiW . 7 is < '^ , the rod will slip at A instead of turning about it.

2a- b 2

We can shew in a similar way in this case that it will turn about C,

when P= iiW . . .

2a- b

b-a ixW
If uW . ^ r=^ , the rod is about to slip at both A and B snnul-

2a -b 2

taneously when P— \ixW: the investigation of the point about which the

rod will turn in this case is beyond our present scope. It is easily seen

that the point lies between A and C.

Ex. 7.* A heavy straight rod, whose sectional area varies as the

distance from one end, rests on a rough horizontal jDlane. At the other

end, perpendicularly to its length and in the horizontal plane, a force is

applied of gradually increasing magnitude : prove that the distance of the
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point about which the rod begins to turn, from the end first mentioned,

is given by the equation
4:X^-6lx^' + P= 0,

where I is the length of the rod.

Let ^B be the rod, B the end at which the force is appHed.

Let us investigate whether or no there is a point in AB about which

the rod may be on the point of turning.

If there is such a point, let C be it, and let x be its distance from the

end A.

J



182 STATICS.

determines a real point on the rod. This must be the point, round which

the rod is about to turn, since the rod will turn about it rather than slide

past it (Art. 112).

Ex. 8.* A square lamina is supported in a horizontal position by means

of four rough pegs on which its angles A, B, C and D rest. A horizontal

force is applied at C at right angles to AG and gradually increased until

it moves the lamina. Shew that, if the pressures on the pegs be equal,

the lamina will begin to turn about the angle A.

Let P be the applied force which will cause the lamina to be just on

the point of motion.

We know (Art. 112) that the square will be on the point of turning

about A, provided that all the necessary equations of equilibrium can be

satisfied on such an assumption, without requiring the friction exerted

at A to be the maximum.

Let be the point of intersection of the diagonals of the square. Let

Figr.95

Q be the maximum friction that can be exerted at any of the corners of

the square—then if rotation isabout to take place about J, the force at D
will be Q along DC, that at C, Q opposite to P, and that at B, Q along CB.

Taking moments about A, we have

P.AC=Q{AD + AG+ AB),

• '. P^Q{l+j2).

The friction at A must be equal to the resultant of the other four

forces, its magnitude is therefore

^{{P-Q-QJ2T'+{Q|^y^-Q|^/2y-\, i.e. zero.

A is the point therefore about which the square will begin to turn.
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Ex. 9. A heavy particle is placed on a rough inclined jDlane whose

inclination is equal to the angle of friction : a thread is attached to the

particle and passed through a hole in the plane which is lower than the

particle, but not in the line of greatest slope : shew that if the thread be

very slowly drawn through the hole the particle will describe a straight

line and a semi-circle in succession.

Let be the hole; OA the horizontal line in the inclined plane

through O. Let P be the particle^ W the resolved part of its weight in

the plane. The maximum friction that can be exerted on it is JV

therefore.

Let d be the angle the string PO makes with a line of greatest slope.

Let be the angle the direction of motion at any instant, and therefore

the friction, makes with a Une of greatest slope. Let T be the tension of

the string.

(1) When P is above OA.

The resolved parts of forces down the line of greatest slope

^W+Tcosd-Wcos(f>.

Those perpendicular to the same line=: T sin 6 - Wsin <p.

Since the particle is drawn very slowly, each of these forces must be

indefinitely small. Therefore ^ and T are both indefinitely small. Hence

the particle moves down a line of greatest slope, until it reaches A.

(2) ^Vllen P is at ^.

The forces now are TF-7Fcos0 and T -W&\n(f), whence we infer

that = 0, i.e. the particle moves off initially at right angles to OA.

The particle, however, cannot remain any longer in the same line of

greatest slope, and since it must always be approaching 0, it describes

a curve, which has a line of greatest sloi^e as tangent at A, and which

passes through 0.
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(3) When P is below OA.

A B M

F;g.97

In this case we deduce, as before, that

jr{l-cos0)-rcos^ = O,

Trsin0-rsin^=O.

The solution T=0=^ is inadmissible here, since we know that the

particle cannot continue to move down a line of greatest slope.

Eliminating T, we have . =cot^,sm

.'. tan ^= cot 6,

2 !-•
Draw VB perpendicular to OF, meeting OA in B'. describe a serai-

circle through P, on OB as diameter.

Let »SP be the tangent at P to this circle. Then

L SPM= z ,S'PP + Z BPM ^ir- 231PO= 0.

Therefore the direction of motion at P is along the tangent to the

circle, i.e. the next point to P in P's path is on the circle. Similarly

the next consecutive point to that and so on.

Hence the semi-circle is the particle's path, and as this is true always
so long as P is below OA, the semi-circle must pass through A, i.e. A
and B are coincident.

Ex. 10.* A uniform heavy beam AB is placed with the end A upon a

rough horizontal plane and a point G of its length touching a rough

heavy sphere whose point of contact with the plane is D. Prove that if

there is equilibrium the magnitude of the friction at each of the three

points A, C, D will be the same. If the coefficient of friction be the same

at each point, the point at which slipping is most likely to take place
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will be A or C, according as A and D lie on the same or opposite sides of

the vertical through Z>.

Let be the centre of the sphere, G the middle point of the beam.

Fig.99

Considering the equilibrium of the sphere and beam together, since

the horizontal forces acting on them are the frictions at A and D respec-

tively, they must be equal.

Also from the equilibrium of the sj)hei-e, by taking moments about O,

we deduce that the friction at C'= that at Z) = tliat at A.

Let us suppose that the sphere is slowly moved away from A, until

equilibrium is about to -be broken
; what will be the nature of the motion

which is about to happen? Of the three forces acting on the sphere,

two, the weight and the reaction at I) act through D, therefore the third,

the action at C, is along CD, and the action at D is within the angle

CDO. Hence slipping cannot be about to occur at D, as then the angle

CDO, and therefore the angle OCD, would be greater than the angle of

friction, which is impossible, as it is the angle the action at C makes

with the normal.

Let DC produced meet the vertical through G in If : join AH. AH
is the direction of the action on AB at A.

Hence either the angle AH makes with the vertical, or OCD must be

the angle of friction, as slipping must occur at either A or C.
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The slipping occurs at J or C

according as L AHG is > or < z OCD, i.e. z ODC, i.e. z GHC,

according as G is nearer A or D,

according as A and B are on the same or opposite sides of the

vertical through D.

Ex. 11.* A heavy cube with its vertical face smooth, is placed on a

rough horizontal plane, and a ladder is placed with the upper end leaning

against it, the vertical plane containing the ladder also containing the

centre of mass of the cube. A man now ascends the ladder and when
he reaches a certain height the equilibrium ceases. Examine the character

of the ensuing disturbance.

Let AB be the ladder, CDEF the section of the cube made by the
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Since the vertical sides of the cube are smooth, the action and reac-

tion (E) at B are horizontal. Draw LBK horizontally to meet the

vertical lines through G' and G in L and irrespectively. Join AL, BK.
The action at A must be along AL.

By Art. 112, slipping will not occur at A if the angle AL makes with

the vertical, i.e. the angle ALG', be less than X, but will otherwise.

(a) Let Z ALG' be <X. (1) or (2) must then occur.

If (1) occur, the action of the plane on the cube is along DK. Hence

(Art. 112) (1) occurs if the Z KBE is <X, but (2) occurs otherwise.

(&) Let z ALG' — \. Neither (1) nor (2) can occur in this case.

(6) and (7) are clearly out of the question, as each would involve A

moving in direction AG, which is impossible as the total action at A is

along AL.

If (5) occur, the resultant of R and W must act along KB, and we

must have the angle A''D£; = tan~^(ii/ir) and <X, but X= z ^LG' = tan~^

{RJ W). Hence we must have W < W, and W tan KBE =W tan X.

If these conditions hold (5) occurs.

If A KBE be >tan-i(i?/jr), i.e. if TFtanA^Di^ be >Tr'tanX, (3) or

(4) must occur.

(3) occurs if tan X be >RIW, i.e. if W be < W, and (4) otherwise.

Ex. 12.* A block in the shape of a rectangular parallelopiped of

weight W rests with one edge horizontal on a rough inclined plane;

against the block rests a rough sphere (W) whose radius is less than the

tliickness of the block. The inclination of the plane is gradually increased
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until equilibrium is no longer possible: shew that if the block tilt, the

sphere will slide or roll along the i^lane according as the limiting inclina-

tion (6) of the plane to the horizon is > or <
7r/-i ; and shew also that if

the block slide, the si:)here will slide or roll according as X (the angle of

friction) is > or < 7r/4 ,
and that in the last case, 6 is given by the equa-

tion TFsin(\- ^)
= TF'sin ^ (cos \-sin X), X being supposed the same

everywhere.

Let be the centre of the sphere, A and B the points where it

touches the plane and block respectively : C the point of the block nearest

to A. Let the inclination of the jalane {6) be such that equilibrium is

just on the point of being broken.

There are onl}- two motions of the block conceivable,

(1) turning about its lowest edge,

(2) sliding down the plane.

Whichever of these two ways the block moves, the sphere will either

(a) slip at B and roll at A, or

(jS) roll at B and slip at A.

The actions at A and B on the sphere must meet in the vertical

through 0, in the point H say: join AH, BH, these will be the directions

of the respective reactions.

As we have seen either (a) or
(jS)

must occur, one of the angles OBH,
OAH must equal X, and as the other angle must be less than X, it is the

greater angle of the two that is equal to X.

We shall prove that / OBH is > or < Z OA H, according as 6 is

< or > 7r/4.

If 6* is < 7r/4, z AOH is > Z BOH,
.-. AH is > BH,

and as BO = OA, and OH is common to the two triangles OBH, OHA,

L OBH is > z OAH.

Similarly it can be shewn that if ^ is >7r/4, z OAH is > z OBH.

Hence whether (1) or (2) happen to the block the sjjhere will roll or

slide at A, according as ^ is < or > -rrj^.

If (2) and
(jS) happen, ^= X, and X is therefore >7r/4.

To find 6 when (2) and (a) happen.

Let R be the normal reaction at B, then taking moments about A for

the equilibrium of the sphere,

Wa sme = R{l + tan X) a.
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Resolving along the plane for the equilibrium of the block

irsin e + R = {W COS 6 + R tan X) tan X.

.-. ir(sin ^ - cos ^ tan X) (1 + tan X)
=W sin d . (tan^ X -

1),

.-. Trsin(X-^) = TF'sin^. (cosX-sinX).

Since 6 cannot be gi'eater than X, this equation shews that if X be

> 7r/4 , (2) and (a) cannot happen.

EXAMPLES.

1. A body is supported on a rough inclined plane by a force acting

along it. If the least magnitude of the force, when the plane is inclined

at an angle a to the horizon, be equal to the greatest magnitude when the

plane is inclined at an angle /3,
shew that the angle of friction is ^{a- ^).

2. Two equal particles on two inclined planes are connected by a

string which lies wholly in a vertical plane perpendicular to the line of

junction of the planes, and passes over a smooth peg vertically above

this line of junction. If, when the particles are on the point of motion,

the portions of the string make equal angles with the vertical, shew that

the difference between the inclinations of the planes must be twice the

angle of friction.

3. A uniform rod is resting on a rough inclined plane, and is moveable

on the plane about one end which is fixed : shew that when it is about to

slip it makes with the line of greatest slope the angle sin~i
{/j.

cot a).

4. Spheres whose weights are W, W rest on different and differently

inclined planes. The highest points of the spheres are connected by a

horizontal string perpendicular to the common horizontal edge of the

two planes above it. If jx, p! the coefficients of friction are such that

each sphere is on the point of slipping down, ixW=ii'W'.

5. Two equal particles rest upon two equally rough inclined planes,

being connected by a string passing over a smooth pulley at the common

vertex, the vertical plane which contains the string being at right angles

to each inclined plane. If the weight of one particle be increased by
a certain amount the system is on the point of motion, and if instead the

weight of the other particle be decreased by the same amount the system

is again on the point of motion in the same direction as before. Prove

that the difference of the inclinations of the two planes is double the

angle of friction.
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6. A lamina is suspended by three strings from a point: if the

lamina be rough, and the coefficient of friction between it and a particle

placed upon it be constant, shew that the boundary of possible positions
of equilibrium of the particle on the lamina is a circle.

7. A uniform heavy rod is in equilibrium in a rough spherical cup ;

and the length of the rod subtends a right angle at the centre of the

sphere; find the greatest angle the rod can make with the horizon in

terms of the angle of friction.

8. Two fixed pegs are in a line inclined at a given angle a to the

horizon. A rough thin rod rests on the higher and passes under the

lower, the higher peg being lower than the centre of gravity of the rod.

The distance of that jDoint from the pegs being a and h respectively,

shew that when the rod is on the point of motion {h^-a) ij.
= {h-a) tan a.

9. Prove that the direction of the least force required to draw a

carriage is inclined at an angle 6 to the ground, where a sin ^= 6 sin ^,
a being the radius of the wheels, h of the axles, and tan

(f>
the coefficient

of friction of the axles.

10. A light string is placed over a rough vertical circle, and a uni-

form heavy rod, whose length is equal to the diameter of the circle, has

one end attached to each end of the string, and rests in a horizontal

position. Find within what points on the rod a given mass may be placed,

without disturbing the equilibrium of the system : and shew that the given
mass may be placed anywhere on the rod, provided the ratio of its weight

to that of the rod does not exceed |(e'^'^-l), where /t is the coefficient

of friction between the string and the circle.

11. Two particles of unequal mass are tied by fine inextensible strings

to a third particle. They lie on a rough horizontal plane with the strings

stretched at a given angle to each other. Find the magnitude and direc-

tion of the least horizontal force which, applied to the third particle, will

move all three.

12. An equilateral triangle, of uniform material, rests with one end

of its base on a rough horizontal plane and the other against a smooth

vertical wall : shew that the least angle its base can make with the

horizontal plane is given by the equation cot d = 2/^ + 1/^3, fx being the

coefficient of friction.

13. Two weights P, Q are connected by a string and rest one on

each face of a double inclined plane, the string passing over the cominon

vertex, which is smooth : at first P is about to slip downwards and when
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the weights are interchanged, it is found that P is still just about to slip

downwards : shew that if X, X' are the angles of friction for the two

planes and a, /3
the angles they respectively make with the horizon, then

cos a . cos \'= cos
/3

. cos X.

14. Two rough spheres, the larger of which is fixed, rest on a rough
horizontal plane, and a uniform board rests symmetrically upon the top

of them, its centre of gravity being midway between the points of con-

tact : shew that, if tan X' and tan X be the coefficients of friction between

the board and the larger and smaller spheres respectively, and motion be

about to take place at both points of contact, tan {X'-X) = sin-X.

15. Two rings, each of weight w, shde upon a vertical semi-circular

wire, diameter horizontal and convexity upwards. They are connected

by a light string of length 21 (supposed less than the diameter 2a) on

which is slipped a ring of weight W. Shew that when the two rings are

as far apart as possible, the angle 2a subtended by them at the centre

is given by (TF-f 2j(;)- tan-(a-{-e) (Z^-a^sin-a)^ JF-Vsin^a, e being the

angle of friction.

16. An isosceles triangular prism is placed with its edge horizontal

and its base on a rough inclined plane, the inclination of which is

gradually increased : shew that the prism will tumble or slide according

as ^ is > or <3c/2/t. c is the base of a section perpendicular to the

edge and h the height.*c>^

17. Two hemispheres, of radii a and b, have their bases fixed to a

horizontal plane, and a plank rests symmetrically upon them. If fx be

the coefficient of friction between the plank and either hemisphere, the

other being smooth, prove that, when the plank is on the point of

slipping, the distance of its centre from its point of contact with the

smooth hemisphere is equal to (a ~b) j /x.

18. A disc in the shape of a sector of a circle lies on a rough table

{fj)
and is fastened at the centre by a peg. Shew that the least force

applied along any tangent to the sector necessary to turn it round is to

the weight of the disc as 2/x : 3.

19. A rod rests partly within and partly without a box in the shape

of a rectangular parallelepiped, and presses with one end against the

rough vertical side of the box and rests in contact with the opposite

smooth edge. The weight of the box being four times that of the rod,

shew that if the rod be about to slip and the box about to tumble at the
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same instant, the angle the rod makes with the vertical is

^X + ^ cos~i(^cosX),

where X is the angle of friction.

20. Three equal heavy rough cylinders are placed in contact along

generating lines, lying on a horizontal plane : and two other such

cylinders are similarly placed upon them : find the frictions and reactions

at the instant when the system is bordering on motion.

21. A sjDhere (radius a) whose centre of gravity is distant c from its

centre, rests in limiting equilibrium on a rough plane, which is inclined

at an angle a to the horizon : shew that the sphere may be turned

through the angle 2 cos"^ ( ~
|
and still be in limiting equilibrium.

22. Assuming that the limiting friction consists of two parts, one

proportional to the pressure, and the other to the surface in contact,

shew that if the least force which can support a rectangular parallelepiped,

whose edges are a, b, and c on a given inclined plane be P, Q, R, when

the faces in contact are he, ca, ah respectively, then

{Q-Ii)hc+{R-P)ac + {F-Q)ah^Q.

23. A rough rod rests over a rough sphere, one end of the rod press-

ing on a rough horizontal plane, on which the sphere rests. Shew that

there will be limiting equilibrium for the whole system when the rod

makes an angle 2X2 with the plane, if the weight of the sphere is to the

weight of the rod in the ratio sin {\-\-^ : sin(Xo + Xi), where Xj is the

angle of friction between the rod or sphere and the plane, and Xo the

angle of friction between the rod and sphere.

24. A rectangular lamina rests in a vertical plane with the middle

point of one side in contact with a rough peg, the coefficient of friction

being 2, and a point in the opposite side in contact with a smooth peg.

If the line joining the pegs make an angle a with the vertical, and the

sides in contact with the pegs an angle 6, when the lamina is just about

to slip, shew that tan [d-a) — \-2 tan d.

25. A heavy rod PQ is in equilibrium with its ends on a rough

parabola whose axis is vertical and vertex downwards : shew that the

line joining the intersection of the tangents to the parabola at P, Q to

the intersection of the normals makes with the vertical an angle not >
the angle of friction.
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26. A pair of equal rods AB, AC are hinged together at A and have

rings at jB, C : these rings are free to slide along fine rough (//,) straight

wires OB', OC in the same vertical plane equally inclined at an angle a

to the vertical. Shew that in the limiting positions of equilibrium the

angle between the rods is either

2 tan-i 2 Lt^fl^ or 2 tan'i 2 lr_^J^^^ .

tan a- im, tan a + //

27. A right-angled isosceles triangular lamina rests with its base

angles on the arc of a rough circular wire whose plane is vertical and

radius equal to either of the equal sides of the triangle. If the equal

sides be horizontal and vertical in the limiting position of equilibrium

the coefficient of friction is | { ,^17
-

3}.

28. Two uniform rods of equal weight, but different lengths, are

jointed together and placed in a vertical plane over two rough pegs in

the same horizontal line : if a, /3 be the inclinations of the rods to the

horizon, 6 that of the reaction at the hinge, prove that when the rods

are on the point of slipping, 2 tan^ = cot (/3-t-X) -cot (a -\), where \ is

the angle of friction.

29. An ellipse is placed with its plane vertical and major axis hori-

zontal so that one of its vertices A rests against a rough vertical wall.

P is a point on the wall vertically above A, and a string of length 21

which has its extremities fastened at the foci S, H passes through P.

Find the least value of the coefficient of friction consistent mth the

equilibrium of the ellipse.

30. A uniform ladder (length 2a) rests at an angle a to the vertical

against a smooth horizontal rail at a height h from the ground. If \ be

the angle of friction, between the ground and the ladder, shew that a man
of weight n times that of the ladder may ascend a distance along the

ladder, {2 (n + 1) h sin X . sec (a
-

X) cosec 2a-a} I n, without the ladder

slipping,

31. A uniform rod AB rests with its ends on a rough circular wire in

a vertical plane and the equilibrium is limiting ; shew that the vertical

through the centre of the rod meets the circle through AB and the centre

of the wire in two points, in one of which the directions of the resultant

actions at A and B meet.

32. A uniform rod of mass 31 rests in a horizontal position with its

ends on the circumference of a rough vertical circle and subtends an angle

2a at the centre. An insect of mass m starts from the middle point of the

G. 13
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rod and crawls gently towards one end. Prove that if the angle e of

friction be less than 45*^ it will be able to reach the end of the rod without

disturbing the equilibrium provided sin 2e>msin 2aj{M+ m).

Examine the case when e>45°.

33. A rod resting with one end on a rough horizontal plane, leans

against a rough cylinder, which rests on the plane, with its axis at right

angles to the rod. Determine how the equilibrium is broken, when the

plane is gradually more and more inclined.

34. A uniform rod, length 2a sin a, is placed within a rough vertical

circle, radius a, and is on the point of motion, the coefficients of friction

at its upper and lower ends are tan \', tan X : prove that if 6 be the in-

clination to the vertical of the line joining the centre of the circle to the

centre of the rod

.
. sin (X+V)

tan 6 = f, TT ^; 777 r .

2 COS (X + a) cos (X
-

a)

Examine the case when a-f X= 7r/2.

35. One end of a heavy rod AB can slide along a rough horizontal

rod ^C to which it is attached by a ring ;
B and C are joined by a string : if

ABC be a right angle when the rod is just on the point of slipj)ing, fi the

coefficient of friction and a the angle between AB and the vertical, shew

that _ sin a cos a

^~T+cos2a*

36. A circular lamina, whose centre of gravity is at an excentric

point, rests in a vertical plane supported by the loop of a rough string

which is attached to two fixed points. If the lamina be on the point of

slipping and the radius containing its centre of gravity be inclined at

right angles to the radius bisecting the portion of the string in contact

with the circle, the angle of contact 0, is given by

1 _ e^^0 2 c
'

a being the radius of the circle and c the distance of its centre from its

centre of gravity.

37. A rough circular disc of radius a has its centre of gravity at a dis-

tance h from the centre, and rests in a vertical plane on two pegs placed at a

distance apart < 2^(a--Z>-) and > 2& in a horizontal line: shew that

equilibrium is possible for all positions of the centre of gravity provided
the angle of friction be not less than sin~i {hja).
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38. Two equal heavy rods AB, BC, each of length 2a, joined together

at B, hang with AB resting on a rough peg P. If /x be the coefficient of

friction, and 2a the angle between the rods, shew that AB will slip on

the peg if PB < a cos a (cos a- fi sin a) or > a cos a (cos a + fx sin a) .

39. A uniform isosceles triangular lamina rests in a limiting position

of equilibrium in a vertical plane between two rough pegs in the same

horizontal line : prove that 3c cos X cos {d + a)
=

'2p sin 2a . sin [26 + 2a — X),

where 6 is the inclination of one side to the horizon, X the angle of

friction, 2a the vertical angle of the triangle, p the perpendicular from the

vertex on the base, and c the distance between the pegs.

40. Three rough jjarticles of masses m^, m.^, m^ are rigidly connected by

light smooth wires meeting in a point 0, such that the particles are at the

vertices of an equilateral triangle whose centre is 0. The system is

placed on an inclined plane of slope a, to which it is attached by a pivot

through ; prove that it will rest in any position if the coefficient of

friction for none of the particles be less than

tana / o o o vi

41. A cylindrical rod with hemisiDherical ends rests in a vertical plane

against two equally rough planes, one horizontal, the other vertical :

determine the limiting position of equilibrium, and shew that if the co-

efficient of friction be not less than the ratio of the length of the straight

part of the rod to the total length, it will rest in any position.

42. A uniform heavy rod of given length rests perpendicularly and

horizontally across two rough parallel horizontal rails which support the

rod at a quarter of its length from each end. One end of the rod is pulled

perpendicularly by a string in a downward direction making an angle 6

with the vertical : shew that the rod will move at both points of support

at the same time when 6— t&n~^2iJi.; and in this case find the tension of

the string.

43. To the ends of a heavy rod are attached rings which slide on the

circumference of a rough vertical cu'cle. Find the force perpendicular to

its direction, acting at a given point of it which will just move the rod

when in any position : and prove that for all positions it will be greatest

when the rod is inchned to the horizon at an angle

tan~^(cot 2e +cos 2a /sin 2e),

where 2a is the angle subtended by the rod at the centre and tan e the co-

efficient of friction.

13—2
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44. A straight uniform rod of length 2c is placed in a horizontal

position as high as possible within a hollow rough sphere of radius a.

Prove that the line joining the middle point of the rod to the centre of

the sphere makes with the vertical an angle io.TT'^ fxaj \J{a^-e^).

45. A semi-circular arch, composed of an odd number of equal and

similar smooth blocks, is constructed upon a rough horizontal plane:

prove that the number of blocks must be 3 : and that the coefficient

of friction must be not < 1/^3. Also prove that the ratio of the internal

to the external arch must not be > the positive root of the equation

2 V^ {x^ -t-.T + 1) + TT (2.r2
- a; - 3)

= 0.

If the blocks, except the key stone, be rough, and if their number be

n, greater than 3, prove that the angle of friction at the ^jth joint from the

base must be not < cot~^ {(^i-^i?) tan 7r/2?i} -pirjn.

46. Two particles of equal weight lo connected by a rod without

weight rest on a rough plane inclined to the horizontal at an angle a : the

coefficient of friction p tan a for one particle is less, and that for the other

p tan a greater, than tan a. Prove that, when both are on the point of

moving, if in the plane a triangle ABP be constructed whose sides AB,

BP, PA are 2, p , p, and be the middle point of AB which is drawn in a

line of greatest slope, then OP is the direction and OP . lo sin a is the

tension of the rod.

47. An elliptical cylinder placed in contact with a vertical wall and

a horizontal plane is just on the point of motion when its major axis is

inclined at an angle a to the horizon. Determine the relation between the

coefficients of friction of the wall and plane : and shew from your result

that if the wall be smooth, and a be equal to 45*', the coefficient of

friction between the plane and cylinder will be equal to ^c^, where e is the

eccentricity of the transverse section of the cylinder.

48. Two equal spheres rest on a rough horizontal plane, the distance

between their centres being c : and a third sphere rests on them : prove

that the normal pressure between the two spheres is equal to half the

weight of the upper sphere, and that the necessary and sufficient condi-

tion of equilibrium is a-\-h>\c . cosec 2e, where e is the angle of friction,

and a, h the radii of the spheres.

If this condition is not fulfilled how will the lower spheres begin

to move?

49. An elliptic lamina of eccentricity e rests upon a perfectly rough

equal and similar lamina, the two bodies being symmetrically situated
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with respect to their common tangent at the point of contact. If a be

the incHnation of the major axis of the fixed ellipse to the horizon, and 6

be the inclination, measured in the same direction, of the major axis of

the moving ellipse in a position of equilibrium, then

sin^ {6 + a)=e'^sin 6 cos ^{6 -a).

50. A chain is formed by 2n rods, equal in length and weight,

smoothly jointed together. The two extremities can move by rings on a

rough horizontal rod, coefficient fx. Shew that in the limiting position

of equilibrium the inclination of either of the upper rods to the vertical is

51. A rough elliptic cylinder rests with its axis horizontal upon the

ground and against a vertical wall, the ground and the wall being equally

rough ; shew that the cylinder will be on the point of slipping when its

major axis plane is inclined at an angle of
irj-i

to the vertical if the

eccentricity of its principal section be a^ {
2 sin X (sin X + cos X) } , where X is

the angle of friction.

52. An elliptic lamina moveable about its focus in a vertical plane

rests against a smooth inclined plane, the major axis of the ellipse being

horizontal. The lower surface of the plane is rough and rests just on the

point of moving on a horizontal table. If a, b be the semi-axes of the

ellipse, and p the perpendicular from the centre on the inclined plane,

shew that the coefficient of friction is \/{{p-
-

^^)/(«^- P")} •

53. A circular ring of weight W hangs in a vertical plane over a

rough peg, and to the lowest point of the ring a string is fastened. It is

kept always horizontal in the plane of the ring, and its tension is

gradually increased from zero. Prove that the ring will slip on the peg
when the tension of the string reaches the value W tan | {

sin~^ (3 sin e)
-

e} ,

€ being the angle of friction ;
and explain what happens if 3 sin e > 1 .

If the tension be still further increased to a given value T, find the

position of equilibrium.

54. A ring of diameter a is fixed with its plane making an angle a

with the vertical, and a rough uniform cylinder is supported by being

slipped through the ring: prove that the length of the cylinder must be

not less than

cosf^rta-X)acos^ . . ,:
—

, .

'

sm (^±a) smX

wiiere X is the angle of friction, and d is the inclination to the axis of the
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cylinder of a plane section whose major axis is equal to a. (The sign to

be taken in the above expression depends on whether the cylinder and

ring make angles with the vertical on the same or opposite sides.)

55. A cylinder is laid on a rough horizontal plane, and is in contact

with a rough vertical wall, the coefficients of friction being equal ; a string,

coiled round it at right angles to the axis, passes over a fixed pulley and

sustains a weight which is gradually increased until equilibrium is broken.

Determine the nature of the initial motion. (Jellett's Friction.)

56. Two uniform beams, of the same material and thickness but of

different lengths, rest each with one end on a rough horizontal plane, and

their other ends connected by a smooth joint. If equilibrium be about to

be broken shew in what way it will happen.

57. Two weights, P, Q, whose coefficients of friction are
fx-,^ ^lo, each

less than tan a, on a rough inclined plane of angle a, are connected by a

string which passes through a fixed pulley A in the plane. Prove that if

the angle PAQ be the greatest possible the squares of the weights of P, Q,

are to one another as 1 -
/x.^"

cot^ a is to 1 -
/x^" cot- a.

58. A rough rod is laid on a horizontal table and is acted on by a

horizontal force perpendicular to its length. Find about what point the

rod will begin to turn, the point of application of the force trisecting

the rod.

59. A cubical uniform block is placed on a rough inclined plane and

has two of its faces vertical : it is attached by a string parallel to a line

of greatest slope of the plane passing from the middle point of its upper

horizontal edge to the middle point of the nearest horizontal edge of

another equal similarly situated cube. If
/j. (less than unity) be the coeffi-

cient of friction for the lower block, the equilibrium will be broken when

the inclination of the plane to the horizon is given by 2/j.
=Ssmd- cos 6^

by the higher cube tumbling over, provided the friction coefficient for the

higher block be great enough.

60. A heavy rod, of length 21, rests horizontally on the inside rough

surface of a hollow circular cone, the axis of which is vertical and the

vertex downwards. If 2a is the vertical angle of the cone, and if the

coefficient of friction is less than cot a, prove that the greatest height of

the rod, when in equilibrium, above the vertex of the cone is

I cot a
1 + cos2 a + sin2 a ^(sin^ a+ 4/U-)| 4
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61. A cubical block, and a cylinder whose diameter is equal to a side

of the cube, are laid upon a rough plane, and are attached to each other

by a cord coiled round the middle of the cylinder, and fixed to the middle

point of one of the edges of the cube which is parallel to the axis of the

cylinder. If the plane be then slowly raised (the cube being uppermost)
until equilibrium is broken, what will be the nature of the initial motion?

(Jellett's Friction.)

62. Two particles A and B of weight W are connected by a thin

weightless rod and placed on a rough inclined plane at an inclination to

the line of greatest slope, the coefficient of friction for each particle being

/u. A force F is applied to A the lower particle in the direction BA and

its direction gradually turned through an angle 6 in the plane. Find the

nature of the initial motion of the system. If the particles be placed

along a line of greatest slope, prove that both will slip when

j'2 + 4jf^2gij2a(sina-ucosa)
POO, H :^

2FTr(/acosa-2sina)
'

and find the limits between which F must lie when a<tan~'
^/;(..

63. Two hemispheres (centres A, B and weights Wi and TFo) are

placed with their rims on a rough horizontal table and in contact, and a

rough sphere (centre G and weight W) rests on them, of such a radius

that ACB is a right angle. The system is on the point of moving : shew

that the sphere will begin to slip over the larger hemisphere, whilst the

larger or the smaller hemisphere will begin to slip according as

(TFj
- Wo) sin e < or > WJ -J, cos (a + tt

/ 4) sin (a + e),

where e - 7r/4 is the angle of friction, and a is the angle CAB.

64. A cylindrical rod with hemispherical ends and another cylinder

are in contact on a rough i^lane, the axis of the former is vertical, that of

the latter horizontal. The radius of the horizontal cylinder is such that

the other touches it at a point in the rim of its upper hemispherical end.

The horizontal cylinder is gradually moved along the plane in a direction

perpendicular to its axis, the two remaining in contact : shew that equi-

librium is no longer possible unless X be >7r/4, and if X be >7r/4, equi-

librium is impossible when the rod makes an angle > 6 with the vertical,

where 6 is given by the equation h cos 6= h + (h + a) cos 2X.

Explain how the equilibrium is broken in this case.

a= the radius of the hemispherical ends, 2h = the length of the

generating lines of the rod, and X = the angle of friction, supposed the

same everywhere.



CHAPTER VI.

VIRTUAL WORK.

113. Def. If the point A at which a force P is acting
be displaced to any point B, the distance ^i^ is called the

displacement of the point.

If from B, BN be drawn perpendicular to P's line

of action, the product P.AN is called the work done by

B

Fig.102

N

the force P during the displacement. If N falls on that
side of A towards which P acts, the work is said to be

positive, if on the other side, negative. We may say
then that the product of the force into the projection of

the displacement, along the direction of the force, gives
the algebraical as well as the numerical value of the work
done during the displacement.

If the displacement does not really take place but is

only imagined to do so, it is said to be a vii^tual displace-
ment, and the work which would be done during such
a displacement is called the vii^tual work.

114. Prop. If a particle acted on by any system of

forces receive any virtual displacement whatever, the alge-
braical sum of the virtual work done by the different

forces during the displacement is equal to the virtual work
done by the resultant.
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Let represent the actual position of the particle, 0'

the position to which it is supposed displaced ;
let P^, P^,

Fig, 103 0/

Pg, &c., be the forces acting on the particle ; 6^, 6^, 6^ &c.,

the angles their directions make with 00'.

The A. s. of the virtual work done by P^, P^, Pg, &c.

= P, .00' cos
6',
+ P,. 00' cos ^, + Pg. 00' cos ^3+.. .

= 00' . (P, cos e^ + P^cos 6>,
-f ...)

= 00' X A. s. of the resolved parts of the forces in direc-

tion 00'

= 00' X resolved part of the resultant in direction 00'

=
projection of 00' along the direction of the resultant

X the resultant

= the virtual work done bv the resultant.

It should be observed that in the above proposition the

displacement the particle receives is virtual, and entirely
unrestricted both as regards magnitude and direction.

Co7\ If a particle in equilibrium under the action of

any system of forces receive any virtual displacement
whatever, the A. s. of the virtual work done by the dif-

ferent forces is zero.
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115. If a system of particles be in equilibrium under
the action of external and internal forces, and any number
of particles of the system receive any virtual displacements
whatever, we have seen that the A. s. of the virtual work
done by the forces on each particle is zero, and therefore

the A. s. of the virtual work done by all the forces, external

and internal, is zero.

Prop, If a system of particles in equilibrium under
the action of any system of external forces together with

internal forces, receive any indefinitely small virtual dis-

placement whatever, which does not alter the configuration
formed by the particles, the A. S. of the virtual work done

by the external forces alone is zero, or more strictly speak-

ing, is of an order higher than that of the virtual displace-
ment.

In this proposition the displacements which the particles
receive are much more restricted than in the corresponding
theorem for a single particle : here the displacement must
be indefinitely small, there it was unlimited in extent : the

displacements, too, of the different particles are ako so

connected, that if the particles formed a rigid body, these

displacements would not involve any alteration in its

shape or size, but only an alteration of its position as a

whole.

We shall first prove that if the displacements be of

this character, the virtual work done by any internal force

(the action exerted by B) on the particle A is equal and

opposite in sign to that done by the reaction exerted by A
on the particle B. Let R be the action exerted by B on
the particle A, along AB in the direction indicated, then

Fig.l04 b'

a'
-

I

r !

:
!

AMR R^ Jti

the reaction exerted by ^ on j8 is in the opposite direction.

Let A'
,
B' be the points to which A, B are supposed dis-
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placed, then by the conditions relating to the nature of

the displacements, the angle (6) between A'B' and AB
is small, and the length A'B' = AB.

Draw A'M, B'N perpendicular to AB.

Then MN= A'B' cos 6 = A'F ultimately,
= AB

.-. AM=BN.
The virtual work done by action R on A = R . AM :

that done by reaction R on B = — R . BN = — R . AM.

Hence the A. S. of the virtual work done by any action

and the corresponding reaction is zero. But the internal

forces consist entirely of pairs, each pair being made up of

an action and the corresponding reaction : therefore the A.S.

of the virtual work done by all the internal forces is zero,

since that of each pair is so. We have seen too that the

A. s. of the virtual work done by all the forces, both external

and internal, is zero, so that that of the virtual work done

by the external forces alone must be zero also.

In obtaining this result we have neglected quantities

depending on the powers higher than the first of the dis-

placement, so that strictly sjoeaking the A. s. of the virtual

work done by the external forces is not zero, but of an
order higher than the first power of the displacement.

Cor. If in any system of forces in equilibrium there

are two forces equal to one another, and acting in opposite
directions along the straight line joining the particles on

which they respectively act, the two forces will not enter

into the equation of virtual work, provided the virtual

displacements of the two jDarticles produce no alteration

in the length of the line joining them, or at any rate one

of the second order only. Hence, if we have two bodies in

contact, and the virtual displacement does not alter the

points in contact, the action and reaction between the two
bodies will not appear in the equation for the two bodies

together. Also, if two particles are connected by an in-

extensible string or rod, and they receive displacements
which do not involve breakino' or bendino' the strino-O O O
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or rod, the tension of the string, or in the case of the rod,
the tension or thrust, whichever it exerts, will not enter

into the equation of virtual work for both particles. This

may easily be extended to the case of two particles con-

nected by an inextensible string which passes round a
smooth fixed body : for the distance between them
measured along the string is constant, so long as the

string neither slackens nor breaks.

116. In applying the above proposition to the case of

a rigid body, we may suppose the displacement any slight

displacement of the body as a whole not involving any
change of shape or size. If we wish to ascertain the inter-

nal forces between one portion of a body and another, we

may suppose that the first portion is displaced as a whole,
without any displacement of the remainder, in which case

the actions of this last portion on the first will enter into

the equation of virtual work.

In solving problems by the principle of virtual work, it is often

convenient to make such a displacement that a force, whose magnitude
we do not wish to ascertain, may not enter into the equation of virtual

work. In that case the virtual work done by that particular force must
be zero, or at any rate of a higher order in small quantities than the

displacement. For that to be the case the particle on which the force

acts must be virtually displaced in a direction making with the force,

either a right angle or an angle differing from a right angle by an in-

definitely small quantity.

In the following propositions, it is understood that the

displacements are indefinitely small.

117. Proj). The work done by the tension of an in-

extensible string or rod, when one end is fixed and the

other attached to a particle which is displaced so that

the string or rod is neither broken nor bent, is ultimately
of an order higher than the first.

It is obvious that the particle can only move in a
direction which is ultimately at right angles to the rod or

string, i.e. at right angles to the tension.
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Prop. If a rigid body resting in contact with any
smooth curve or surface, receive a displacement by sliding

along the curve or surface, the work done by the reaction

of the curve or surface on the body is ultimately of an
order higher than the first.

In this case the particle situate at the point of the

body touching the curve or surface is the one on which the

reaction acts, and this point moves along a tangent to the

surface or curve, i.e. at right angles to the normal along
which the reaction acts.

Prop. If a rigid body resting in contact with any
surface, not necessarily smooth, receive a displacement by
rolling along the surface, the work done by the reaction

of the surface is ultimately of an order higher than the

first.

Let A be the common point of the rigid body and
the surface : let the body be rolled so that the point

'b'

originally at A comes to A\ and B becomes the point of

contact.

Then the arcs AB, A'B are small, and therefore the

corresponding chords
;
also the angle between these chords

is small, so that the base AA', which is the displacement
of ^, is of a higher order than AB.

Cor. If the rigid body partly roll and partly slide

along a smooth surface, it is clear that the displacement is

compounded of the two displacements of rolling and slid-

ing, and is therefore of an order higher than the first,

since each of the latter is so.
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We have already seen that if two bodies in contact

receive such virtual displacements that their points of

contact remain the same, the action and reaction between

the two do not appear in the equation of virtual work for

the two bodies : neither will they if in addition to these dis-

placements one rolls along the other, or if the bodies be

smooth, one slides or partly slides and partly rolls along
the other. For either set of displacements alone will not

bring these forces into the equation, therefore a combina-

tion will not do so.

118. As an illustration of the application of the principle of virtual

work, we will by means of it prove the theorem proved in Art. 81, viz.,

that the tensions at the ends of a weightless string stretched over a

smooth surface are equal.

Let A, B be the points where the string leaves the surface, and let T,

T be the tensions at the ends P, Q respectively.

We shall not interfere with the equilibrium of the string if we suppose

it to lie in a groove cut in the surface, so that when pulled at one end, it

must move along the groove. Let the virtual displacement which is

given to the string be produced by pulling the end P in the direction

AP to P', so that the end Q must move along QB to a point Q' such that

QQ'= PP'. As each portion of the string in contact with the surface

moves at right angles to the action of the surface on it, no work is done

by the actions of the surface on the string, and the algebraical sum of

the virtual work done is T.PP'-T' . QQ', which is therefore zero
; 1. e.

T=T', since PP'=QQ'.

Apply the principle of virtual work to the solution of the following

examples :

Ex. 1. The algebraical sum of the moments about any point in their

plane of a number of coplanar forces in equilibrium is zero.
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Ex. 2. Two small rings of equal weight slide on a smooth wire in

the shape of a parabola, whose axis is vertical and vertex upwards; they
will be in equilibrium if connected by an inextensible string which passes

over a smooth peg placed at the focus.

Ex. 3. Two equal uniform rods freely jointed at their ends rest, one

on each, of two smooth pegs which are in a horizontal Hne. Shew that

the inclination (6) of either rod to the vertical is given by the equation

a sin^ 6= c,

where a is the length of each rod, and c the distance between the pegs.

Ex. 4. Shew that in Ex. 27, page 94, the weight of each beam is

proportional to the tangent of the angle, which the Hne joining the centre

of the semicircle with the corresponding point of contact of the beam
makes with the horizontal.

Ex, 5. Two equal uniform rods of the same material and thickness

have two ends connected by a smooth hinge, and their other ends are

attached to small rings which slide on a smooth horizontal wire. Find

the position of equilibrium when a circular disc whose weight equals that

of either rod, is placed between them so that each rod touches its circum-

ference.

Ans. Each rod makes with the vertical the angle {6) given by the

equation 2a sin^ ^=r cos ^, where a is the length of a rod and r the

radius of the disc.

Ex. 6. A trij)od formed of three equal uniform rods, three ends being

connected by a common joint, and the other three connected, each with

the other two, by equal strings, rests with the joint uppermost on a

smooth horizontal plane. Shew that the tension of each string is TI'c/3//,

W being the weight of a rod, c the length of each string, and h the

height of the joint above the plane.

Ex. 7. A heavy elastic string rests in the shape of a necklace round a

smooth right circular cone whose axis is vertical : shew that its radius is

a + ica?l\ tan a, where X is the modulus of elasticity, ^ira the length of

the string when un stretched, w its weight per unit length, and a the

semi-vertical angle of the cone.

119. We will now prove the converse of the princii^le
of virtual work for a single particle, i.e. if the algebraical
sum of the virtual work done by a system of forces acting
on a particle, be zero for every displacement whatever,
the particle is in equilibrium.
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For let (fig. 103) the forces be P^, P^ &c., the par-

ticle, 00' any virtual displacement, 6^, 0^ &c., the angles

PjjPgj&c. make with 00\ Then, since the algebraical
sum of the virtual work done by the forces =

0,

P^ . 00' cos
6*^
+ P, . 00' cos

6>, + ... = 0,

.-. 00' (P, cos ^^ + P^ cos ^,+ ...)
=

0,

.*. P^ cos 6^ + Pg cos 6^-\- ... = 0,

i.e. the algebraical sum of the resolved parts of the forces

in any direction is zero, and the particle is therefore in

equilibrium.

120.* The material systems, to which the following

propositions refer, are either single rigid bodies, or systems
of rigid bodies, connected in such a manner by means of

inextensible strings, smooth joints, &c., that the motion

of one of them determines that of all of them.

Prop. A material system as above, under the action

of a system of external and internal forces, such that for

every indefinitely small virtual displacement whatever,
which does not violate the geometrical conditions, the

algebraical sum of the virtual work done by the external

forces is of an order higher than the displacement, is in

equilibrium.

For if the system be not in equilibrium, its motion
is a definite one, which does not break the geometrical
conditions : now we can conceive a number of smooth
surfaces or inextensible strings so arranged, that they
do not interfere with the actual motion of the system,
but yet render it the only motion possible. If this be

done, the whole system can be fixed by fixing one of the

moving points in it, and this can be done by applying to

it a force (P) of sufficient magnitude, in the direction

opposite to the point's motion, since that is the only
direction in which the particle can move.

The system is now in equilibrium under the action of

the original forces, the new forces of constraint and the
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force F. If then any virtual displacement be given
to it, the algebraical sum of the virtual work done by
these forces is zero : let the displacement be the one
which actually takes place, when F is not applied. In
this case the new forces of constraint do no work, so that
the algebraical sum of the virtual work done by the

original forces and F is zero. But we know that the

algebraical sum of the virtual work done by the original
forces alone is zero

;
hence the virtual work done by F is

also zero. But as the point on which F acts is one of the

moving points of the system, its displacement is of the
first order, so that F must be zero, i.e. the system is in

equilibrium without F, and without the new forces of

constraint.

121.* Projy. A material system as above, under the

action of external and internal forces, will, if held in any
position, and then let go, move at first so that the alge-
braical sum of the work done by the external forces is

positive, and of the first order of the actual displacement,

provided the position is not one of equilibrium.

If the system is not in equilibrium, we can, as before,

arrange a system of smooth surfaces, so that the actual

motion is the only one possible, and this again can be

entirely prevented by applying at one of the moving par-
ticles, A, say, of the system, a force, of sufficient mag-nitude
F, in a direction opposite to that of A's motion. The

system being now in equilibrium we see as before, choosing
the virtual displacement that which actually takes place,
that the algebraical sum of the virtual work done by the I

original forces and F is zero. 1

But it is obvious, since A moves in the direction op-

posite to that of the force F, the work done by F is

negative and of the first order
;
and therefore the alge-

braical sum of the virtual work done by the original forces

is positive and of the first order of the displacement.
The algebraical sum of the work actually done by the i

G. 14
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original forces is therefore at first positive and of the first

order of the actual displacement.

122. Bef. The equilibrium of a body is said to be

stable, when, on moving it slightly from its position of equi-
librium, it returns to it

;
if it moves still further away

from this position, its equilibrium is unstable. If the body
remain in equilibrium, the equilibrium is neutral.

If a small ring slide on a smooth circular wire placed in a vertical

plane, it will be found by experiment that there are two positions of

equilibrium, one, the stable one, at the lowest point of the wire, and

towards which it will readily return if moved away from it : the other, the

unstable one, at the highest point, away from which it will move if

disturbed ever so slightly, and in which it is found practically almost

impossible to keep it. A uniform sphere resting on a smooth horizontal

plane is an instance of a body in neutral equilibrium ;
for if it be rolled

out of its position along the plane, it will neither return, nor, unless a

velocity be given to it, move further away.

The positions of stable and unstable equilibrium of a

body succeed one another alternately, i.e. there cannot be
two positions of stable equilibrium without one of unstable

equilibrium between them, and vice versa. For a position
of stable equilibrium is one to which the body tends to

move when placed near it, so that if there are two such

positions of a body, there must be a position between them
such that, if the body be placed on one side of it, it will

tend to move towards one of the above positions, and if

placed on the other side, towards the other: i.e. there is a

position of unstable equilibrium between them. Similarly
we can shew, that there is a position of stable equilibrium
between every two positions of unstable equilibrium.

123.* Prop. When the only external forces acting on
the material system of the last two propositions are the

weights of the different particles which compose it, and
the forces due to the geometrical constraints, such as the

reactions of smooth surfaces and the tensions of in exten-

sible strings, the system is in a position of stable or unstable
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equilibrium, according as its centre of mass is at a maximum
or minimum depth consistent with the geometrical con-

ditions of constraint.

For the work done by gravity during any displacement
is the algebraical sum of the products of the weight of

each particle into its vertical displacement (the positive

sign being given to the displacement when it is down-

wards, the negative when upwards): and this again is

equal to the product of the weight of the whole system
into the vertical displacement of its centre of mass. Also,

during any displacement of the system, consistent with

the geometrical conditions, gravity is the only force which
does work. We have seen (Art. 121), that when not in

equilibrium the system moves so that the work done by
the forces is initially positive, i.e. in this case, so that

the centre of mass moves downwards. Hence the system

always tends to move initially, so that its centre of mass
moves towards the adjacent position at a maximum depth
and away from the adjacent position at a minimum depth;
these positions succeed one another alternately, and it is

clear that the former are positions of stable, and the latter

of unstable equilibrium.

124.* The cases considered above divide themselves
into two classes : one, in which the centre of mass of the

system is constrained to move along a certain curve, so

that in any position, it is onl}^ free to move in tiuo direc-

tions, opposite to one another; the other, in which the

centre of mass is constrained to move on a certain surface,
so that in any position, it is free to move in any direction

in a certain plane, the tangent plane to the surtace at the

point. A rod with its ends compelled to move along fixed

wires is an illustration of the first class, one placed inside

a bowl is an illustration of the second class.

If there is a position of the system, such that for all

possible small displacements from it, the depth of the

centre of mass is diminished
,
that position will be a position

of absolutely stable equilibrium; on the other hand, a

14—2
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position, such that for all possible small displacements
from it, the depth of the centre of mass is increased, is one
of absolutely unstable equilibrium. A point then on the

locus of the centre of mass, where the tangent line or plane
is horizontal and below the adjacent points of the curve

or surface, corresponds to a position of the system of abso-

lutely stable equilibrium, when it is above the adjacent

points, to one of absolutely unstable equilibrium.

If the locus of the centre of mass be a curve, it may be
that there is a point on it, such that the tangent at it is

horizontal, and cuts the curve there, i.e. the adjacent part
of the curve on one side is above the tangent and that on
the other side below it : in other words there may be a

point of inflexion at which the tangent is horizontal. Such
a position of the centre of mass corresponds to a position
of equilibrium of the system, a position from which a dis-

placement in one direction will bring about a tendency to

return to it, in the other direction, a tendency to recede

still further from it.

Again, when the locus of the centre of mass is a surface,

the shape of the latter may be that of a saddle, or that of

the ground at the top of a pass between two mountains;
in this case a tangent plane to the ground at the top of the

pass is horizontal, and has part of the surface above it and

part below it. This position of the centre of mass cor-

responds to a position of equilibrium of the system, which
is unstable for displacements of the centre of mass in the

plane containing the tangent to the path over the pass, and
stable for displacements in the plane at right angles to it.

125.* A body BAG rests on a rough fixed body DAE,
the surfaces near the point of contact A being spherical :

it is required to determine whether, for displacements
made by rolling only, BAG is in stable or unstable equi-
librium.

Let 0, be the centres of the spherical surfaces : we

suppose that the common normal oAO is vertical. G the

centre of mass of BAG will be situate in Ao.
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het BAGhe displaced by rolling through a small angle
so that it comes into the position B'A'C, G' and o' being

a
,' Fig.107

the new positions of G and o, P the point of contact of

the two surfaces.

Let oA=r,OA=R,AG = h, ^AOP= a, and A'o'P-=^,

-.' the arc AP = the arc A'P, Rol = r/3.

Now the equilibrium is stable or unstable, according as G
was originally at a maximum or minimum depth,

i.e. according as G' is vertically above or below G,

according as Go' cos a — G'G cos (a + ^) is OG^,

>
{R + r) cos a — {r

—
h) cos (a + /8) is i^ + li,<

<
h {1

— cos (a + /3)} is r {cos a — cos (a + ^)]>
— R(l — cos a),
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according as h is

7^ . sm -
. sm a + — — it sm -

< 2 V 2/ 2

k is —^^—
7 ;=^

—''— as a and are small,> (^^ + ^)

. < tR (2r + i^)
- Rr"

^'''> {R-^rf

1. >R + r 1 1
ris -^— or ^ + -.

This result is also easily obtained from the consideration,

that BAC will return to its original position or not, accord-

ino- as G' lies nearer to Oo than P or further from it.

If the concavity of either surface be turned the other

way we shall obtain the same result as before, except that

the sign of the corresponding radius will be changed. If

either surface be plane, its radius is of course infinity.

Cor. The above results hold for any curved surfaces,

if R and r represent the radii of curvature of the sections

made by the plane of displacement.

If Y = - + ^ ,
the equilibrium is said to be critical,

h r li

and we must proceed to a higher degree of approximation
in order to determine whether the equilibrium is really
stable or unstable.

Ex. 1. A body made uj) of a cone and a hemisphere having a common

base, rests with the axis vertical on a rough horizontal table : determine

the greatest height of the cone in order that the equilibrium may be

stable. Ans. Height of cone = ;^3 . radius of base.

Ex. 2. A prolate spheroid rests with its axis horizontal on a rough

horizontal plane ;
shew that for rolling displacements in its equatorial

plane the equilibrium is neutral, and for displacements in the vertical

plane containing the axis, it is stable.
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Ex. 3. A right circular cylinder of radius r rests with its axis hori-

zontal on a fixed rough sphere (radius R > r): shew that the equilibrium

is stable or unstable, according as the plane in which the displacement

takes place makes with the vertical one containing the axis of the

cylinder an angle <or>cos~^^(r/jR).

Ex. 4. A prolate hemispheroid rests with its vertex on a rough hori-

zontal plane, prove that the equilibrium is stable or unstable according

as the eccentricity of the generating elhpse is less or greater than ^{Sj8).

126.* The material systems for which we have proved
the preceding proj^ositioDS have been either single rigid

bodies, or rigid bodies connected in such a way that the

position of one determined the positions of the others.

We caii however easily extend them to include the case of

a system of rigid bodies so connected, that it is necessary
to know the positions of a number of the bodies in order

to know those of all.

Prop. If the algebraical sum of the virtual work done

by the external forces be zero for all possible small virtual

displacements consistent with the geometrical conditions,

the above material system is in equilibrium.

For if it is not, it will have a definite motion consistent

with the geometrical conditions, and without interfering
with the actual motions of the bodies we can so arrange a

number of smooth surfaces or inextensible strings, that

these actual motions are the only ones possible : they need
not however all take place, i.e. several of the bodies may
move without all the others doing so, and fixing one of

them will not of necessity fix all. In this case we can re-

duce the whole system to rest by fixing one moving point
in each of the bodies, and this can be done by a^^plying
forces P, Q, R, &c. of sufficient magnitude in the directions

opposite to the actual motions of these points respectively.
Now the whole system is in equilibrium under the action

of the original forces, the new forces introduced by the

smooth fixed surfaces &c., and the forces P, Q, R, &c.:

therefore, if the virtual displacements chosen be the actual
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ones, the algebraical sum of the virtual work done by the

original forces and P, Q, R, &c. will be zero, because the
virtual work done by the reactions of the smooth surfaces
is zero. But it is obvious that the work done by each of
the forces P, Q, R, &c. is negative, since the particle
on which it acts moves in the direction opposite to that
of the force : the algebraical sum of the work done by the

original forces is therefore positive, which is inconsistent
with its being zero, as it is by supposition. Hence each
of the forces P, Q, R, &c. is zero, and the system is in

equilibrium; and as the smooth surfaces or inextensible

strings do not interfere with the actual motion in any way,
their removal will not upset the equilibrium of the system.

Cor. We see from the foregoing, that when such a
material system as the above is not in equilibrium in a

particular position, under the action of given external

forces, it will, if placed in that position and then released,
move so that at first the algebraical sum of the work done

by the external forces is positive. By reasoning as in

Art. 123 the proposition there proved can be extended
to the case of the material systems we have just been

considering. Among these systems we can include a mass
of liquid, or a heavy inextensible flexible string. In fact

the propositions of Arts. 120—123 apply to all systems
of bodies the internal forces among which can do no work,
so long as the geometrical conditions are not violated :

they will not however apply to those systems in which
the internal forces are capable of doing work

;
for instance,

systems in which the pressures of compressible fluids, the
tensions of elastic strings, and the actions of rough surfaces

are included among the internal forces. On the other
hand there is no restriction on the nature of the external

forces : they may consist of frictions, or the tensions of

elastic strings, without atfectiug the validity of these

propositions.

127.* In a precisely similar way we could prove the

much more general proposition still, that if any material
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system whatsoever, under the action of any system of

forces, be placed in any position and then released, it will,

if not in equilibrium, move at first so that the work done

by all the forces, internal as well as external, is positive.

128.* Def. When the forces, internal as well as ex-

ternal, acting on a material system are such, that the

algebraical sum of the work done by them, as the con-

figuration of the system changes, depends only on the

initial and final configurations and not on the paths the

different bodies take, they are said to form a conservative

system of forces.

Def. If any material system is acted on by a con-

servative system of forces, the algebraical sum of the work
done by these forces, as the configuration of the system
changes from any other to some standard configuration,
is termed the Potential Energy of the system correspond-

ing to the former configuration. It is generally convenient
to take the standard configuration such, that the potential

energy for every other configuration which is practically
considered is positive.

129*. Prop. When any material system is acted on

by a conservative system of forces, it is in a position of

stable equilibrium when its potential energy has a mini-

mum value, and in a position of unstable equilibrium
when its potential energy has a maximum value.

We have seen (Art. 127), that when the system is

placed in any position, except one of equilibrium, and then

released, it will move so that the algebraical sum of the

work done by the forces is initially positive, i.e. it will

move so as to diminish its potential energy. Hence it

will move towards a position of minimum, and away from

one of maximum, potential energy. The joositions of

maximum potential energy then are positions of unstable

equilibrium and those of minimum potential energy of

stable equilibrium.
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The proposition proved in Art. 123 is a particular
case of this theorem.

1*30. Recapitulation. We began by shewing that if a

particle be in equilibrium, the total virtual work done by
the forces acting on it, during any virtual displacement
whatever, is zero. The same theorem is therefore true for

any system of particles, when the internal as well as the

external forces are taken into consideration
;
but if the

virtual displacement is a small quantity of the first order,

and the system of particles form a rigid body, and also in

certain other cases, it was shewn that the total virtual

work done by the external forces alone is a small quantity
of the second order.

The converse theorem was then shewn to hold for

single rigid bodies, and also for a system of rigid bodies,

connected in certain ways. Also such a system will, if

placed in any position, and then released, move so that

the total virtual work done by the external forces during
the initial small displacement is positive, unless the posi-
tion is one of equilibrium. Hence followed the principle,
that such a material system, when gravity is the only
active force, is in stable or unstable equilibrium, according
as its centre of mass is at a maximum or minimum depth
consistent with the geometrical conditions. Similarly
followed the more general theorem, that for any material

system under the action of any conservative system of

forces, stable positions are positions of minimum, and un-

stable positions of maximum, potential energy.

ILLUSTEATIVE EXAMPLES.

Ex. 1. Find the amount of work done in stretching an elastic string.

Let a be the natural length of the string, \ its modulus of elasticity;

let X be the extension of the string.

Let the extension x be divided into n, an indefinitely large number,

equal parts. Wlien the length of the string is a-\ , the tension is
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T X 7* -1- 1
X .

-
.
-

, and therefore the work done in stretching? it to a-\ x lies
n a 11

between
r X X r+1 X X

A .
-

.
-

.
-

,
and A . .

-
.
-nan nan

i.e. the total work done in stretching the string to the length x

_ Xx2 jt l + 2 + 3+...(w-l) _Xa;2

^= 00 w 2a
'

Hence the work done in increasing the extension from y to x is

X(a;2-7/)/2rt.

Ex. 2. Shew that the power necessary to move a cylinder of radius r

and weight W up a plane inclined at angle a to the horizon by a crowbar

of length I inclined at an angle /S to the horizon is

sm aWr
I

*

l + cos(a + /3)

'

Fig. 103.

Let be the point where the axis of the cylinder intersects the verti-

cal plane containing the crowbar AB ;
C the point where the same plane

meets the generating line in contact with the inclined plane.

Let P be the force, which applied at B at right angles to AB will

maintain equilibrium.

Let the virtual displacement be for AB to turn through a small angle

6, so that its inclination to the horizon becomes /3 + ^.

By Art. 117, the actions between the cylinder and crowbar and between

each and the plane do not enter into the equation of virtual work.

The vertical height of above A {& AC sin a + OC cos a, i.e.

= r {sin a . tan ^ (a + /3) + cos a]~r cos ^ (a
-

/3)/cos \[oi-\- j8).
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neglecting the weight of the crowbar, the equation of virtual work is

cos- cos

P.l.d-W .r\

cos
a + ^ + d

cos
a + /3

:0.

P = Wr sin a
sin

cos
a + jS

cos

Wr
I

Wr

sm a
cos

2

2 cos'
,

a + /3

2
cos

a + ^ + d

2

sin;

2

sin a

I *l + cos(a + j3)'

since 6"^ and higher powers are neglected.

"s/.. Ex. 3. A straight uniform rod has smooth small rings attached to its

extremities, one of which slides on a fixed vertical straight wire, and the

other on a fixed wire in the shape of a parabola whose latus rectum equals

twice the length of the rod, and whose axis coincides with the straight

wire: prove that in the position of equilibrium (stable when the vertex is

upwards) the rod will be inclined at an angle of 60'^ to the vertical. "Which

is the position of stable equilibrium when the vertex is downwards ?

Let PQ be the rod, P being the point on the parabola. Let d be its

inclination to the vertical, 2a its length, and G its middle point.

Draw PN perpendicular to the axis AN.
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(1) When the axis is upwards, the depth of G below A

=AN+PG cos d

PN^ ^ 4a2sin2^= — h a cos 6=——
; h a cos d

Aa 4a

= a(l + cos^-cos2^).

The positions of equilibrium are given by the maximum and minimum
values of this expression,

1 + cos ^ - cos2^ = f - (A
- cos df,

i.e. is a maximum when cos^:=^ or when ^= 60*^.

It is clearly a minimum when ^ = 0.

Hence ^= 60^ corresponds to a position of stable equilibrium, and

^ = to one of unstable equilibrium.

(2) WTien the vertex is downwards ^= corresponds to the position

of stable, and ^=60*^ to the position of unstable equilibrium.

Ex. 4. Two smooth rods which intersect at an angle 2a are placed so

that they are equally inclined to the vertical, and the line bisecting the

angle between them is inclined at an angle /3
to the vertical. Prove that

a spherical ball of radius a will be in a position of unstable equilibrium,

if the distance of its points of contact with the rods from the intersection

of the rods be
a cot a cos ^

\/{l
- cos- a sin-

/3)

'

Let be the centre of the sphere, 0' of the circle in which it is inter-

F/g.iio
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sected by the plane of the rods. Let B, C be the pomts where the rods

AB, AC touch the sphere : 6 the angle GO' or BO' subtends at 0.

Then 00'= acos^, CO'= a sin ^, ^0' = a sin^ . cosec a.

The vertical height (h) of above A

= A0' cos p+ 00' sin 13,

= a (sin ^ cosec a . cos
j3 + cos ^ . sin

j9).

Let cos/3 coseca = rcos 0, and sinjS=rsin0:

then h=ar (cos sin ^ + cos 6 sin 0) = ar sin (0 + 0).

Now the sphere is in a position of unstable equilibrium when h is

a maximum, i.e. when + = 7r/2, i.e. when 0=cot~i (sin a tan ]3).

But AB = O'B cot a = a cot a sin 6,

a cot a a cot a . cos/SAB =
^(1 + sin2 a tan^'

/3) ^/(l
- cos^ a sin^

j3)

*

Ex. 5. Three equal heavy rods are connected by two hinges, a string

is attached to the free ends and hung over a peg so that the middle rod is

horizontal
;
a is the angle which either of the other rods, and

/3 the angle

either part of the string, makes with the vertical. Prove that

2 tan a = 3 tan j3.

Let be the peg, AB, BC, CD the rods.

Let 21 be the length of the string, and a that of each rod.

The depth of the centre of mass of the whole below is

? cos
/3 + |a cos a.
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Since the algebraical sum of the horizontal projections of the sides

of OABCD is zero,

2Z sin /3 + 2rt sin a = 2a.

If the virtual displacement be such that the rod BC is moved vertically

through a small distance, without interfering with any of the connections,

no work is done by any of the forces except gravity, and therefore none

is done by gravity ;
in other words, the displacement of the centre of mass

is of the second order.

Let, in consequence of this displacement, a become a + d, and /3, /3 + 0,

then I cos p + ^a cos a = l cos (iS + 0) +^acos(a + ^),

and Zsin/3 + asina= a=Zsin (j3 + 0) + a sin (a+ 6),

.-. Isin (^ +
^) sin|

+ fasin (« +
g) siHg^^'

/ 0\ . / d\ . d ^
and Zoos (

/3 + 2
1 sm- + acos ( a +

2
I sm- = 0;

.-.

tan^^+|)=|tan^a
+
^^,

.*. 3 tan/3= 2tano,

since 6 and <p are indefinitely small.

Ex. 6. Four uniform thin heavy rods are freely jointed together at

their extremities so as to form a parallelogram, and two opposite

angular points of the frame so formed are connected by a light in-

extensible string ;
the system is suspended by another string attached to

one of the same angular points : compare the tensions of the strings.

Let A be the point from which the frame is suspended, B the

diagonally opposite point to which the string is attached.

The centre of mass, G, is the middle point of AB, which is therefore

vertical. Let the virtual displacement be such that B is moved vertically
downwards through a small distance x without any separation of the rods

at the joints.

By Art. 117, the only forces which occur in the equation of virtual

work are T, the tension of the string AB, and W the weight of the four

rods.
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The equation is
X

T .x-W .^=0;2

i.e. the tension of the string AB is half that of the one which supports the

whole framework.

Fig.ll2. j^

The same reasoning would enable us to prove that the same relation

holds when the framework of rods form the edges of a parallelopiped, or

any figure, such that tlje centre of mass is always the middle point of the

diagonal along which the string lies.

Ex. 7. Three equal particles, each of weight W, are fastened to an

endless elastic string without weight, so as to be at equal distances from

each other. The whole is then laid on a smooth sphere so that the string

lies unstretched along a horizontal small circle of the sphere whose radius

is f that of the sphere. Prove that the particles will be in equilibrium

when the lines joining them subtend angles of 60*^ at the centre, the

modulus of elasticity of the string being SWI2J2.

Let be the centre of the sphere; A, B, C the positions of the

particles when in equilibrium. Let H be the point where the vertical

through meets the plane ABC, which is from symmetry horizontal.

Let 7'= radius of the sphere. Let be the angle which AB, BC, or CA
subtends at 0, and 6 the angle which OA, OB, or OC makes with OH.

LAHB=^LAHC=LBHG= lir,

HA = r sin 6.
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.'. ^JS= 2r sin ^ . sin ^7r= ,y3 . r sin
;

.-. 2sin i0=r^3.sin^ (1).

The original length of the string was f7rr ; when stretched it is 3r0.

Pig. 1 13.

T, the tension, therefore

_ 3r0 - f TT?' SW _ SW 40 -TT

|7rr '2^2'
~
2^ '

~i;^
'

Let the virtual displacement be such that all three particles descend

through equal small distances, the consequent small increments in 6 and

being x and y. The equation of virtual work is then

BIFr {cos ^- cos (^ + a;)} -T . Br.y = 0,

• n 3 40-7r ,„,
.-. xsmd= y

.^-j^. -^
—

(2)

From (1) 2sini(0 + ?/)
=V3.sin(^ + a;) (3);

.-. subtracting (1) from (3) we have

2 cos
^1 +1] sin|= V3 .cos

(^d

+
fj

sin
|,

.-. 2/cos^=a'.s/3.cos^ (4);

G.
15
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eliminating x : y between (2) and (4),

3 - /3 40 ^TT

^/!
cos = sin 6 cos

TT

t
2'

or substituting from (1)

7\/6-
——-

± TT n/(-
• o \ /r« •

4 sm- ^
= 2 cos ^ sm ^ = sin 0.

This equation is satisfied by putting <p
=

^7r, and substituting in (1) we

get a consistent value for 6; this value of therefore corresponds to a

position of equilibrium.

Ex. 8. A small ring slides on a smooth elliptic wire, whose axis is

vertical : elastic strings connect it with each focus : the modulus of

elasticity is half the weight of the ring : and either string is just

unstretched when the ring is nearest the corresponding focus. Shew

that in the unsymmetrical position of equilibrium the distance of the

ring from the upper focus is equal to the distance of the centre from

either directrix. Determine the nature of the equilibrium in the different

positions.

Let P be any position of the ring, »S", A' the upper focus and vertex,

S, A the lower. Let W be the weight of the ring.

Let the system have its standard configuration (Art. 128) when the

ring is at A. Then, the potential energy of the system when the
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ring is at P is the total work done by the forces as the ring moves from

Pto^.

Draw PN perpendicular to the directrix NX. The potential energy

•of the system, when the ring is at P, is (Ex. 1, page 218),

W(PN-AX) + ^-^
^P''-^^" W S'A^-S'F'

~
\ e

"^

4a(l-e) f

_ f,S'P-a(l-g) ,S'P=^-2a.g:P + a2 (i
_

^2)
^~

[
e

"^

2a(l-e)^ ^

e 5P2 + 2a (1
-

2g) SP - a- (1
-

e) (2
- 3e - e-)= Tr

= ]F^

2ag(l-e)

/ 2e-l \2 «2

2fl (1
-

e)

2<?- 1
The minimum value of this expression corresponds to SP= a,

e

i.e. S'P = -=CX; the maximum values correspond to the greatest and
e

least values of SP, i.e. when P coincides with A and ^'.

Hence the stable position of the ring is where its distance from S'= CX,
and the unstable positions are A and A'. This supposes that there is a

point P on the ellipse such that S'P= -
,
which will not be the case unless

e be less than a certain quantity. If there is no such point, it is easily

seen that A' is the position of unstable and A of stable equilibrium.

EXAMPLES.

1. A heavy beam AB is moveable freely about the end A which is

iixed
;
an elastic string is attached to A, passes through a fixed ring G

vertically above A and is fastened to ^. AG is equal to AB. Find the

l^osition of equilibrium. If the natural length of the string be AG^
discuss the problem in the case when its modulus of elasticity is >

,
=

,

-or <c half the weight of the beam.

15—2
'o^
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2. A rhombus is composed of four equal rods jointed at their

extremities. Two opposite corners are connected by an elastic string

whose natural length is a \/2, a being the length of each rod, and the

system stands in a vertical plane with one of the corners on a horizontal

table. Find the anprle between the rods.^c

3. A solid homogeneous hemisphere of radius a and weight W rests

in apparently neutral equilibrium on the top of a fixed sphere of radius b.

Prove that oa = Sh. A weight P is now fastened to a point in the rim of

the hemisphere. Prove that if 55P = 18 W, it still can rest in apparently

neutral equilibrium on the top of the sphere.

4. Two heavy rings slide on a fixed smooth parabolic wire whose axis

is horizontal, and the rings are connected by a string which passes over

a smooth peg at the focus. Prove that in the position of equilibrium the

depths of the rings below the axis of the parabola are proportional to

their weights. Is the equilibrium stable or unstable ?

5. A prolate spheroid rests upon another equal and similar fixed

spheroid, the point of contact being on the equatorial plane of each, their

major axes being horizontal and at right angles to each other. Prove

that the equilibrium will be stable for a displacement in a plane through
either axis, if the upper spheroid be loaded at its lowest point with a weight

bearing to its own weight a ratio greater than the duplicate ratio of its

least and greatest diameters.

6. A uniform rod AB of length 2a is freely moveable about A : a

smooth ring of weight P slides on the rod and has attached to it a fine string

which passes over a pulley at a height b vertically above A and supports

a weight Q hanging freely; find the position of equilibrium of the

system.

7. A cylinder rests in equilibrium with the centre of its base on the

highest point of a fixed and perfectly rough sphere. The altitude and

diameter of the base of the cylinder are each equal in length to a

quadrant of a great circle of the sphere. Find the greatest angle througli

which the cylinder may be made to rock without falling off.

8. A wire in the form of an ellipse, whose semi-axes are a and b, is

placed with its minor axis vertical. A light string of length a on which

slides a ring of weight W has one end fastened to the centre, and the

other to a ring of weight W, which slides on the wire. Shew that, if

there is no friction, there will be equilibrium if W is anywhere on the

upper half of the ellipse, and bla= WI{W+ 2W').
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9. Two particles are connected by a fine inextensible string and can

move freely in a smooth cycloidal tube whose vertex is upwards, the

string passing over the vertex. Prove that in equilibrium the arcual dis-

tances of the particles from the vertex must be inversely as their masses.

10. A heavy hemispherical bowl of radius a containing water rests

on a rough inclined plane of angle a, prove that the ratio of the weight of

the bowl to that of the water cannot be less than -;
—-—-^— ,

where
sni <p-2 sin a

Tra- cos- (p is the area of the surface of the water.

11. A parallelogram composed of jointed rods, each of length a and

weight P, is hung up by one angle, and inside it is placed a circular disc of

xadius h and weight W. Prove that there will be equilibrium, when the

inclination of the rods to the vertical is

,1 Wb )^sin~i ^
'

2a(ir+2P)(

12. A lamina in the form of a rhombus made up of two equilateral

triangles rests with its plane vertical between two smooth pegs in the

same horizontal plane at a distance apart equal to a quarter of the longer

diagonal : prove that either a side or a diagonal of the rhombus must be

vertical, and that the stable position is that in which a diagonal is

vertical.

13. A parallelogram ABCD formed of four uniform rods freely

jointed at the corners has the side AB fixed horizontally, and the frame

hangs in a vertical plane with the joint A attached by a light string of

length I to the opposite joint C : AC is the shorter diagonal and a the

acute angle of the parallelogram : shew that the tension of the string is

Wl
-^r— cot a, where a is the length of the fixed side and W the weight of the

four rods.

1-4. A surface rests in contact with a perfectly rough fixed surface,

the common normal at the point of contact making an angle a with the

vertical : prove that the equilibrium is stable or unstable, according as

the distance of the centre of mass from the point of contact is less or

greater than
cos a

where p, p' are the radii of the surfaces, supposed spherical at the point of

-contact.
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15. A heavy body in the shape of a paraboloid of revolution placed

on a rough horizontal plane, has its C, G. at the critical height : determine

this height, and find the real nature of the equilibrium.

16. A thin straight rod is suspended by a fine inextensible string

fastened to it at the two ends and passing over a fixed smooth peg. If

the centre of gravity of the rod is not at its middle point, determine

whether the equilibrium is stable or not.

17. A uniform rod of length c rests with one end on a smooth

elliptic arc whose major axis is horizontal and with the other on a

smooth vertical plane at a distance h from the centre of the ellipse : prove

that, if 6 be the angle which the rod makes with the horizon and 2a, 2&^

the axes of the ellipse, 2h tan d — a tan 0, where a cos <p + h= c cos 6.

18. Two elastic strings are fastened at a fixed point P and pass

through fixed smooth rings A and B such that PA, PB are the natural

lengths of the respective strings; the other ends of the strings are

fastened to G and D, two points of a rigid lamina which is moveable in

its plane about a fixed point 0. If ^ and B are in the same plane as

the lamina and if the angles COA, DOB are supplementary and the

system is in equilibrium, prove that the equilibrium will be neutral.

19. Twelve equal uniform rods form a cube having universal joints

at each of its angles; shew that, if it be suspended by one of its angles,

and be prevented from collapsing by a rod without weight forming a

diagonal not passing through the point of suspension, the tension of the

rod will be eighteen times the weight of one of the rods.

20. Two equal rods rigidly fastened at right angles to each other are

placed over an ellipse whose plane is vertical and major axis horizontal
;

find the least length of the rods that the equilibrium may be stable.

21. A smooth fixed sphere supports a zone of very small equal

smooth spherical particles and the whole is prevented from slipping oft"

the sphere by an elastic ring occupying a horizontal circle of angular

radius a, shew that in the position of equilibrium the tension of the band

is T, where 27rr= Tf'tana, and W is the whole weight of the ring and

jjarticles together.

22. A uniform elliptic hoop is weighted at an extremity of its major
axis by a weight equal to that of itself : shew that if it be placed on a

smooth horizontal plane with its plane vertical, it will have two or four
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positions of equilibrium according as its eccentricity is less or greater

than 2~^. Wliat is the nature of the equilibrium in the several positions?

23. Two similar uniform straight rods of lengths 2a, 2b rigidly

united at their ends at an angle a rest over two smooth pegs in the same

horizontal plane : prove that the angle which the rod 2a makes with the

vertical is given by the equation

c (a + b) sin {26 -a) — «- sin a sin ^ - b- sin a sin (a
-

^),

c being the distance between the pegs,

24. Three equal and in everyway similar uniform rods AB, BC, CD,

freely jointed at B and C, have small smooth weightless rings attached to

them at A and D : the rings slide on a smooth parabolic wire whose axis

is vertical and vertex upwards, and whose latus rectum is half the length

of the three rods : prove that in the position of equilibrium, the in-

clination [0) of AB or CD to the vertical is given by the equation

cos ^ - sin ^ + sin 2^= 0.

Is the equilibrium stable or unstable ?

25. A number of uniform thin rods, all equal and similar, are freely

jointed together at their middle points, so that they form the generators

of a right circular cone, symmetrically placed about the axis. Within

the cone thus formed is placed a smooth sphere, and round the rods a

smooth thin ring of the same weight and radius as the sphere. The

whole is placed on a smooth horizontal plane, so that the ring is below

and the sphere above the vertex of the cone
; prove that the semi-vertical

angle {&) of the cone in one position of equilibrium is given by

2 sin ^ + sin 26 = PrfiP + W) a,

where W is the weight of the rods, P that of the sphere and ring

together, 2a the length of each rod, and r the radius of the ring or sphere.

Determine the stress on any rod at the joint.

26. A, B, C, D are four fixed points in the same horizontal plane, at

the corners of a square whose semidiagonal is 6. A', B', C, D' are the

corresponding corners of a square plate of weight W and semidiagonal a .

Four equal cords join A A', BB', CC, DD'. When the plate is hanging

by the cords the distance between A'B'C'D' and ABGD is Tc. Shew that

if a couple L about a vertical axis be applied to the plate so that it is

turned through an angle 6, then

L = Wab sin 6l\/{k-
- 4a6 sin- ^6).
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27. Two equal equilateral triangular laminae freely jointed together

at their vertices are placed with their bases on a smooth horizontal

table, and have their base angular points connected by two inextensible

strings, one of which is equal in length (2a) to a side of either triangle.

Shew that the tension of the other string {2b) is equal to

2a^-W

S{Sa-h)i{2a-b)^'

W being the weight of either triangle.



CHAPTER VII.

MACHINES.

131. It is frequently desirable that we should be able

to counteract one force by another, differing from it in

magnitude, point of application, or direction, or in all three.

To enable us to do this we employ machines more or less

complicated.

In Statics we suppose the machine to be in equilibrium
under the action of the forces due to the geometrical
conditions of constraint, the force at our disposal generally
called the Poiver, and the force which we wish to coun-

teract, generally called the Resistance or the Weight.

It is found practicall}^ that, when the power is just
on the point of overcoming the weight, other resistances

are called into play, owing chiefly to the friction between
the different parts of the machine, and the imperfect

flexibility of ropes : all tliese resistances oppose the power,
so that the latter has to be greater than would be neces-

sary, were the machine a perfect one. If the weight
were on the point of overcoming the power, these resist-

ances would assist the latter. It is usual to call the

resistance or weight, which it is the object of the machine
to enable us to overcome, the useful resistance, while the

other resistances are called wasteful resistances. When
we take these latter into consideration, we shall suppose
that motion is just about to take place, and that the

jjower is overcoming the useful resistance.
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If motion just occurs, the work done by the power will

equal that done against both the useful resistance and
the wasteful ones

;
the former part of the work is termed

useful and the latter lost work.

132. Def. When motion just takes place in a machine^
the ratio of the useful work done to the whole work done
in the same indefinitely short time is called the efficiencif

of the machine. It is of course desirable to have the

efficiency as near unity as possible.

Let P denote the power, W the useful resistance, and
W the wasteful resistance.

If P move its point of application through a small

distance 5, and in consequence the work done against W
be w, and that done against W be w

,
we have from the

principle of virtual work,

Ps = w + w',

the efficiency then is w/{w + w').

Let Pq be the force which would just move W were
there no wasteful resistance, then P^s = w by the principle
of virtual work. Hence the efficiency

= P^s/Ps = PJP, or

the efficiency is the ratio of the power, which would just
move the weight were there no wasteful resistance, to the

actual power required.

Unless otherwise stated, we shall suppose the machines

perfect ones, i.e. with efficiency equal to unity.

133. The simple machines are,
—the Lever, the Wheel

and Aiiole, the Pulley, the Inclined Plane, the Screiv and the

Wedge. The principle of the wheel and axle is the same
as that of the lever, and the screw and wedge are identical

in principle with the inclined plane.

134. The Lever. This is a rigid rod, straight or

curved, and free to turn about a fixed axis, which is

called the fulcrum. The two parts into which the rod is

divided by the fulcrum are called arms.
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Levers are usually classified as follows. In the lever

of the first class, the fulcrum is between the power and
the weight : a poker where the bar of the grate is used

as the fulcrum, and a pair of scissors are instances of it.

In the second class, the weight is between the fulcrum

and the power, as in a wheelbarrow, where the point of

the wheel in contact with the ground is the fulcrum, or

in an oar, where the blade in contact with the water is

the fulcrum, and the resistance is applied at the rowlock.

In levers of the third class, of which a pair of shears is

an example, the power is between the fulcrum and the

weight.

135. The condition of equilihriuni of a Lever. As in

Art. 74 we can shew that the necessary and sufficient

condition of equilibrium of any body whatsoever, which is

free to turn about a fixed axis, and under the action of

any number of forces, is, that the algebraical sum of the

moments of the forces about the fixed axis be zero. In

the case of the simplest form of the lever the forces are

generally only two, the power and the weight, acting
in one plane, so that the condition of equilibrium becomes
that the moment of P about the fulcrum should be nu-

merically equal but of opposite sign to that of W.

This condition may also be easily found by the Prin-

ciple of Virtual Work.

136. To determine the pressure on the fulcrum when
the lever is in equilibrium.

Since the action of the fulcrum tooether with the

power and the weight keejDS the lever in equilibrium,
the reaction on the fulcrum is obviously the resultant

of the power and the weight. If, however, the lines of

action of P and W are not in one plane, they do not re-

duce to a single resvdtant, and the pressure on the ful-

crum is not a single force.

We shall assume that the lines of action of P and W
are in one plane.
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When the power and the weight are parallel, the

reaction {R) of the fulcrum (F) is parallel to each of them
;

and in a lever of the first class R = P -{ W,
of the second class R= W — P,

of the third class R=P — W.

When the lines of action of the power and weight are

not parallel but meet in G, let A, B be their respective

Fig.115.

points of application, a, /5 the angles, which their lines of

action make with AB.
It is required to find the magnitude of R, and the

angle {0) its direction makes with AB.

Since the lever is in equilibrium under the action of

the three forces, i^'s line of action passes through (7.

Also (Art. 18) sin^Oi^ : sin BCF= W : P
;

.-. sm{e-a) : sm(7r- 0-/3) = W :P;
sin 6 cos a — cos 6 sin a W

• — •

sin 6 cos /3 + cos sin /3 P '

W sin /9 + P sin a

Also

P cos a— W cos /8

*

R' = P' ^ Q' + 2PQC0S AGB ;

R = V}p2+Q2_ 2PQ cos (a +/S)|.
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137. To find the relation between the Power and the

Weight in a rough Lever, w^hen the Power is on the point
of moving the Weight.

Let A,B he the points of application of the power (P)

and the weight ( W) respective!}'' : let their lines of action

Fig. 116.

meet at C at an angle 0. The fulcrum is a rough solid

cylinder, which passes through a cylindrical hole in the

lever, just so much bigger in diameter that there is contact

along one generating line only.

Let the plane ABC, which we assume to be perpen-
dicular to the axis of either cylinder, cut the hole in the

circle DUG of radius ?' and centre F, D being the point
where the line of contact meets the circle. Join DC, then

the reaction of the fulcrum (R) acts along CD. Also, since

the lever is on the point of turning round F in the direction

in which P tends to turn it, the reaction R will make with

the normal FD an angle equal to X, the angle of friction,

and on the side which enables it to assist W.

Let p, q be the perpendiculars from F on the lines of

action of P, W respectively.

Since R counteracts P and TT,

R'' = P' + Tf'+ 2PW cos e.
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Also, by taking moments about F, we have

Pp — Wq + Rr sin \
=

Tfg + rsinX. >/(-?'+ Tf' + 2PTr cos (9)... (1).

If P could only just balance W, or, in other words, were

W on the point of moving P, the relation would be

Pp= Wq- r ^m\ . s/[P' + W^ +2PW . cos 6) .

138. To find the efficiency {E) of the rough Lever.

Let Pq be the power just required to move W, when
the fulcrum is perfectly smooth.

Then P,p = Wq.

P Wq
But the efficiency, E —^ = -^ .

Therefore from (1) we have

r sin\
. W I

i + ^—ir- + 2i
^

9.

1=E +
p l+i^+2fcos^);

.-. pq (1-E)= r sin \.^/{q'-\- p'E' + 2pq.E. cos 6),

which gives us E.

139. The Wheel and Axle. This machine consists of

a cylinder a (the wheel) with a groove cut round the cir-

cumference, and a cylinder b of smaller radius (the axle).
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The two form one rigid body and have a common hori-

zontal axis cc
^
at the ends of which are two pivots c and

c', resting in fixed sockets so that the whole can turn

about this axis.

The power P is applied tangentially at the circum-

ference of the wheel, generally by means of a rope, while

the weight is suspended by a rope which is wound round

the axle so that it tends to turn the machine in the op-

posite direction to the power.

The apparatus for drawing a bucket of water out of a well is frequently

a machine of this kind, the power being applied by means of a handle

attached to the wheel instead of by a rope. A windlass for hauling up an

anchor on board ship is a modification of the wheel and axle, in which

the common axis is vertical, and the power is applied at the end of poles

which project from the wheel so as to form radii produced.

The wheel and axle, as before stated, is a kind of

lever, and we can shew as in Art. 74 that the condition

of equilibrium is that the moment of P about the axis

should be equal and opposite to the moment of TF, i.e.

that P X the radius of the wheel = TF x radius of the axle.

Ex. 1. Four sailors, each exerting a force of 112 lbs., can just raise

an anchor by means of a capstan whose radius is 1 ft. 2 in. and whose

spokes are 8 ft. long (measured from the axis). Find the weight of the

anchor. Ans. \\% tons.

Ex. 2. If the length of each of a pair of sculls be 8 ft. 6 in., and the

distance from the hand to the rowlock be 2 ft. 3 in., find the resultant

force on the boat when the sculler pulls each scull with a force of 25 lbs.,

assuming that the blade does not move through the water. Ans. 18 lbs.

Ex. 3. A fly-wheel 10 ft, in radius weighs 15 tons, its axle is 6 in.

in radius and revolves in bearings between which and it the coefficient of

friction is "2 : find the smallest weight which, hung from a band round

the circumference of the wheel, will just turn it. Ans. 333 lbs. nearly.

140. The Pulley. A pulley -block consists of two

plates, connected by an axis about which a circular disc,

with a groove cut in its circumference, can turn. Ris^idlv

connected with the axis is a hook to which a string can
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be attached so as to support the pulley, or by means of

which the pulley can support a weight. Sometimes there

are several discs, either turning about the same axis or

placed one below another
; they then form double, treble,

&c. blocks.

When the block is fixed, the pulley is said to he fixed;
otherwise it is called a moveable pulley.

A rope passes along the groove in the circumference

of the disc, and, as the latter is supposed smooth, the

tension of the rope will be the same on both sides the

pulley.

If a fixed pulley be used to enable us to overcome

resistance, the only object gained by the use of the pulley
is that the force applied is enabled to counteract a force

in a different direction, though of no greater magnitude.

When a single moveable pulley is used, the weight W
is attached to the block, and the power P is applied at

Fig.118

one end of a rope which passes under the disc of the

pulley, the other end of the rope being fastened to a fixed

point.

It is obvious, when the strings are parallel, that

W = 2P, and when they are not parallel, but each makes

an angle 6 with the vertical, that W= 2P cos 6.



MACHINES. 241

141. There are three systems of pulleys usually de-

scribed in text-books.

In the first system, the weight is attached to the lowest

pulley, which is supported by a rope, one end of which is

?^f

4

M

w

tt'.

T
Fig. 1 19

attached to a fixed beam, and the other end to the next

pulley above, Avhich is in turn supported in a similar way:
the power is applied at the end of the rope supporting
the highest pulley. The portions of the ropes not in

contact with the pulleys are vertical.

Assuming the ropes to be without weight, we can

easily investigate the condition of equilibrium. Let there

be n pulleys, whose weights in order from the lowest are

tu^, tu^, ..AUn, and let the tensions of the ropes supporting
them be T^, T^,...T^^. Then from the equilibrium of the

different pulleys, we have

2T^= W + w^ (1),

i'^h2T^=T^-^w.^

G. 16
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2T^^T^+w, (3),

2T„ = T^_, + ^,^

•

00,

also P=T^ (n+1).

Multiplying equations (2), (3)...(?^+ 1) by 2, 2"^ 2^...2"

respectively, and adding, we have

2« . P = Tf + w, + 2^2 + 2X + . . . T-'w^^.

If the pulleys be without weight, this equation reduces

to2\P=Tf.
We can deduce the same equation by the principle of

virtual work.

Let the virtual displacement be the one which would

actually be produced by moving the end of the rope to

which P is applied through a small distance x in P's

direction. By this, the uppermost pulley would be raised

through a height
-

,
the next lower pulley through a

height ^2)
^^d so on, the lowest pulley and weight being

. X
raised through a height

—
.

During this displacement, the actions of the fixed

points to which the ends of the different ropes are at-

tached do no work, nor is any done by the internal forces

of the system (Art. 117). The equation of virtual work
then is

P
.x-w^^.^- w^_^ .

22

- ••• - ['W+^o^) ^,
= 0,

i.e. 2"P = F +
-m;,
+ ^w^ + 2X + • • • 2"'y,.

142. In the second system there are two pulley-

blocks, the upper of which is fixed, and the lower move-
able : a rope passes over one of the discs of the upper
block and under one of the lower block alternately, the

radii of the different discs being such that the portions
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of the rope not in contact with a pulley are vertical, or

nearly so. One end of the rope is attached to one of the

two blocks, and at the other end the power is applied.
The weight is attached to the lower block.

Let W be the weight to be raised, including that of

the lower block : let P be the power which just raises it :

then the tension of the rope is P throughout, and if there

be ?i strings coming from the lower block, the total force

exerted by them is nP, and w^e must have W=nP.

143. In the third system, the uppermost pulley is

fixed : each pulley has a roj^e passing over it, with one
end attached to the weight and the other to the pulley

16—2
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next below. The power is applied at the end of the string

passing over the lowest pulley.

A

TJi

I&

tm Ulo

A To

^2

(nl ffil fnl

^

>^^/
^

Fig.l2J

In investigating the relation between the weight W
and the power P which will support it, we shall suppose
the portions of the ropes not in contact with the pulleys

vertical, and the ropes to be without weight.

Let there be 71 pulleys, including the fixed one, and
let w^, w^, Wg . . . w^_j be the weights of the moveable ones

beginning with the lowest
;

let T^,T^...T^he the tensions

of the ropes passing over them.

Since each pulley is in equilibrium, we have

T,=rf, + w^ (1),

T,==2T^+w, (2),
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from the equilibrium of the weight

T^+T^+T^-\-... 1\=W {n),

also T, = P.

n-2

Multiplying equations (1), {2)...{n-l) by 2""\ 2

2^*"^ ... 2 respectively, and adding, we have

2T„ = 7/;^
. 2"-^ + ^t'^

. 2""'-' + . . . 2io^_^ + P . 2".

Adding equations (1), (2) ...
(?z
—

1), and employing
equation (n), we have

ir-P=2 (Tf- rj + z/;, +^, -h ...
i/;„_,.

Eliminating T^, we have

Tf = P (2'^
- 1 ) + ^, {r" -1)^-10^ (2«-^

-
1) + . . . w„_, (2-1).

To deduce the relation between W and P from the

principle of virtual work.

Let the weight W be supposed moved vertically down-
wards through a small distance x. Then the highest
moveable pulley, w^_^, will be raised through a height x :

the next pulley below will be raised twice the height

through which the highest is raised, together with the

distance through which the weight descends, i.e. through
a height 3.^^^. Similarly we can see that any pulley will

rise through a height x, together with twice the distance

through which the next pulley above rises. The distances,

therefore through which the weights w^^_^,w^^...iu^, are

respectively raised are x, (2^
—

1)^', (2^
—

1) ^, . . . (2"~^
—

1) x.

Also the point of application of P will be moved vertically

upwards through a distance (2"*
—

1) x.

Hence the equation of virtual work is

W .X- w^_^ .x-{r-l) w^_.2 .x-{2^ -1) w^_^ . X

-
(2"-^ -l}w^.x-{2"-l)P .x=0;

:. W= {T - 1) P + (2"-'- l)iu^ + (2"-'- l)ii\^

+ ...(2-'-l)^^V2+^^'n-i-



246 STATICS.

Ex. 1. If there are three moveable pulleys arranged as in the first

system, their weights beginning from the lowest being 9, 3, and 1 lbs. re-

spectively, find what power will support a weight of 69 lbs. Ans. 11 lbs.

Ex. 2. If in the second system there are altogether nine pulleys and

each pulley weigh one pound, what force will be required to support a

weight of 86 lbs. ? Ans. 10 lbs.

Ex. 3. If the weight supported in the third system be 56 lbs., and

each moveable pulley, of which there are 3, weigh 1 lb., find the horizon-

tal distance of the centre of mass of the weight from the centre of the

fixed pulley, supposing the diameters of all the pulleys equal.

Ans. 9/28 the radius of any pulley.

144. The Inclined Plane. A line in the plane per-

pendicular to its intersection with the horizontal plane is

called the line of greatest slope, and the vertical plane

containing this line the principal plane.

To find the condition of equilibrium on an inclined

plane, where W is the weight and P the power.

(i) When the plane is smooth.

Let BAG be a section of the inclined plane made by
a principal plane, BA being the line of greatest slope and

A C being horizontal. Let a = the angle of inclination

BAG.

The reaction R of the plane acts at right angles to

the plane and therefore parallel to the plane BAG: the

weight W acts parallel to this plane also, so that the

power P must also act parallel to this plane. Let 6 be

the angfle which P's line of action makes with AB mea-
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sured up the plane, 6 being positive when P's direction is

above the plane.

By Art. 18,

P \ W \ R = ^m (TT, R) : sin [R, P) : sin (P, W)
= sin a : cos 6 : cos (a + 6).

P clearlv has its least value for a given value of W when

(ii) When the plane is rough, and the direction of P
is in the principal plane.

The total reaction R of the plane will act in the

principal plane, since W and P do
;

its direction cannot

Fig.123

make with the normal an angle greater than X, the angle
of friction, but may make any smaller angle.

Let \' be the angle which R makes with the normal,
k! being measured towards the lower part of the plane.

We have then the equations

R^ = P' + W + 2PTr . COS
('^

+ I +
a)

= p2+ Tr-2PFsin((9 + a),
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and
P Bing-V +

f-g) ,i„(,^,.)

to determine M and X'.

When P is just on the point of moving W so that the
latter is just about to sHp up the plane, the total reaction

will make with the normal an angle X on the side towards
the lower part of the plane : in that case

*

cos (6
—

\)

Also j^^y cos(. + g)

COS {u
—

X)

The value of which will give the least value of P for

a given value of IT is X
;

i.e. for P to be most effective it

should make with the plane an angle equal to the angle
of friction.

By changing the sign of X in the preceding investiga-
tion we can obtain the value of P which will just preventW from slipping down the plane, when the reaction B
will make an angle X on the other side of the normal.
This gives us

P=W ^^~^~^^
'

cos
((9 + X)

'

and ^^^ cos(« + ^
)

cos (6 + X)

(iii) When the plane is rough and P's direction does,

not lie in the principal plane.

Let P make Avith the plane an angle 6, and let its

resolved part along the plane make an angle </>
with the

line of greatest slope drawn up the plane. Let the re-

action R of the plane be resolved into R cos X' along the
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normal, and R sin X' along the plane, the latter making an

angle /3 with the line of greatest sIojdo. Resolving the

Fig. 124

forces at right angles to the plane, along the line of

greatest slope, and in the plane at right angles to the line

of greatest slope, we have

P sin S + Rco^X' — W cos a = 0,

P cos 6 cos (j)-\-
R sin V cos ^ — W sin a = 0,

P cos 6 sin
(f)-h

R sin V sin fi
= 0.

These equations are sufficient to determine R, V and /3,

when the other quantities are known.

If P be on the point of moving W, the reaction R
makes with the normal an angle \, so that writing A, for

V in the above equations, they enable us to determine

P, R and /S, when the other quantities are known.

145. The Screiu. A screw may be supposed con-

structed as follows :
—

Let aa'cl'd be a solid right circular cylinder, and let-

AA'DD be a rectangle, whose breadth AA' is equal to

the circumference of the cylinder. Draw BB'
, CC, DD'

&c. parallel to AA' and at equal distances from one
another: join AB'

, BC\ CD'. Now let the rectangle AD'
be supposed wrapped round the cylinder, so that the sides

ABCD, A'BC'I)' coincide wdth the generator ad, the

points A, A' coinciding in a, B, B' in h, C, C in c, and D,U
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in d. The lines AB', BC, CD' will now form a con-

c'

B' t

Fig.l25

tinuous line going round the cylinder, called a helix. It

is clear that in wrapping the rectangle round the cylinder,
we have not altered the inclination to A'B' of any of the
lines AB', BC, CD', so that the helix everywhere makes
the angle B'AA' with the base of the cylinder. This

angle is called the pitch of the helix
;
and it is equal to

_i AB
tan" AA / J

or tan
_i distance between two consecutive coils {ah)

circumference of the cylinder

Now imagine a solid figure generated by a small rect-

angle ahcd, which moves so that one side ad always
coincides with a generatins^ line, while a corner a describes

the helix, and its plane always contains the axis of the

cylinder. Each point in ah will describe a helix, the pitch
of the helix being smaller the further the point is from a :

the distance between two consecutive coils will be the

same for all, but the circumference of the cylinder round
which any particular helix would wrap being greater the

further the generating point is from a.

This thread is called a square one : an angidar thread

is sometimes generated by an isosceles triangle ahc, whose

plane always contains the axis of the cylinder, and whose
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base ah moves exactly as the side ad of the rectangle abed

which generates the square thread.

The solid cylinder, together with the solid figure above

described, form a solid screw, which works in a hollow

cylinder of the same diameter as the solid one, and with a

groove cut in it, which just fits the thread of the solid

screw. The hollow screw is generally fixed in a support.

The screw is generally used as follows:—
The solid screw has at one end an arm at riofht angles

to the axis: the power P is applied at the end of this arm



252 STATICS.

and perpendicular to it, so as to tend to turn the screw
round and so move it in the direction of its axis, and thus

produce pressure on an}^ body situate at the end of the

axis : the pressure which is thus overcome is called the

weight (W).

146. To find the condition of equilibrium in a screw

with a square thread.

Let a be the leng^th of the arm, at the end of which
the power P acts : h the distance between two consecu-

tive threads. The surface of the groove of the hollow

screw will exert pressures perpendicular to the surface of

the thread at a very large number of points. Let R be

the resistance at one of these points Q, which is at a

distance r from the axis of the screw : we have seen that

the pitch (a) of the helix, which passes through this point,
and has as axis the axis of the screw, is tan~^ hj^irr. The
direction of R is normal to the surface of the thread at Q,

and therefore to any line in that surface, passing through Q.
From the way in which the surface of the thread has been

generated, R must be at right angles to the line from Q
perpendicular to the axis of the screw

;
it must also be at

right angles to the tangent to the helix through Q, i.e. it

makes an angle a with the axis of the screw. We ma}^
resolve R into two components, one along the axis of

the screw, R cos a, and the other R sin a, perpendicular to

the axis, and at a distance r from it. Similarly all the

resistances, such as R, can be resolved in the same way.

Resolving along the axis, we have

W= t (R cos a).

Taking moments about the axis,

Pa = S (Rr sin a).

But 27rr sin a = /i cos a
;

-r, ^ fRh cos a\ h ^ ^T^ X Wh
.-. Pa = t[

— = — S (E cos a)
= ^— ,
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W 2'7ra
" F h

circumference of circle traced out by end of P's arm

distance between two consecutive threads

We can easily deduce the same relation for a screw

with any smooth thread, square or angular, from the

principle of virtual work, by a method similar to that used
in Art. 155.

Ex. A smooth screw makes three revolutions while it advances half an

inch, find the power which must be applied at the extremity of an arm

one foot long in order to produce a pressure of 144 lbs. Ans. '32 lbs.

147. When the screw thread is not smooth, we can
find the condition of equilibrium, if we assume that the

breadth of the thread, i.e. the side ah of the rectangfle

which is supposed to generate it, is very small. The pitch
of the screw will be the same then at every point of the

thread : let it be a.

Let us suppose that the power (P) is just on the point
of moving the weight W, then the limiting friction is

called into play at every point of contact of the thread

with the groove, and acts in the direction in which it can

most efficiently oppose P, i.e. directly opposite to that in

which the point of the thread is about to move : it makes
then an angle ^73

—
"jl,

with the axis of the screw, and is

perpendicular to the line drawn from its point of applica-
tion at right angles to the axis. Let \ be the angle of

friction, R^, P.^, Pg ... the normal reactions at the different

points of contact
;
r the distance of each of them from the

axis of the screw.

Resolving along the axis of the screw, we have

Tf - 2 (P cos a) + 2 (P tan \ sin
y.)
= 0,

taking moments about the axis,

Pa — % (Rr sin
c<)
— S (Rr tan \ cos a)

= 0.
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_, . h COS a
But r sm a —

27r
'

W =
(cos a - sin a tan X) 2 {R) = ^^ii^L+2^) 2 (R),cosX

-^ //i cos a h tan X cos^ ^\ k* /-n\
and Pa = -

..^
4- ^ ^ S (P)

V 27r 27r sm a /
^ ^

_ /?, cot a sin (a + \) -o / p\
27r

"

cos X
'

P _ h tan(a-f X)

W 27ra
*

tan a

When W is on the point of overcoming P, the relation

1
P h tan (o

— X)becomes .^^ = -—
.

^
.W 27ra tan a

Since the power (P^) which would just move W,
when the screw is smooth is Wh/27ra, the efficiency of the

rough screw is = tan a/tan (a + X).

148. The wedge, which is a solid prism, whose section

is an isosceles triangle, and which is used to split wood,

&c., by being driven in by blows of a hammer, is so

essentially dynamical in principle, that we shall not discuss

it here.

149. Besides its use as an instrument for multiplying
Force, the Lever is employed for weighing purposes : in

one form it is known as the Common Balance.

This in its simplest form consists of a straight uniform

beam AB, from the two ends of which scale-pans hang.
The lever turns about a fulcrum C, which is situated

above it in a short beam CD, which projects at right

angles to AB, from its middle point P.

The substance to be weighed is placed in one scale-

pan, and such weights in the other, that the beam is

horizontal when in equilibrium.
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In well-constructed balances for accurate weighing the fulcrum is

formed by the edge of a triangular prism of hardened steel (a knife-edge),

^Q'S

ip-^s

which rests on a plate of smooth agate. Hence (Art. 137) the effect of

friction is rendered very small.

Fig. 128, hke the other figures of the machines, is not intended as a

realistic representation. It is assumed that the student is familiar with

the actual forms of the simple machines.

A good Balance should have the following150.

requisites.

(1) It should be true, i.e. when loaded with equal

weights, the beam should be horizontal. This requisite is

obtained by making the scale-pans of equal weight, and the

two arms exactly the same in weight, length and sectional

area. We can easily test the Truth of a Balance by inter-

changing the weights, which kee23 the beam in equili-

brium, when horizontal : if the beam settles again into a

horizontal position, the weights are equal and the balance

true, but not otherwise.

(2) A Balance should be sensible, i.e. when the weights
differ by a small quantity the deviation of the beam from
the horizontal should be easily perceptible.

To ascertain how to secure this requisite, we must find

the position of equilibrium when the balance is loaded

with weights P and Q.
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Let G be the centre of mass of the lever, not includ-

ing the scale-pans, W its weight. Let AB = 2a, CD = h,

CG = k. Let >Sf be the weight of each scale-pan acting

through A, B respectively. Then if 6 be the angle which
AB makes with the horizontal when P is placed in the

scale-pan hanging from A and Q in the other, we have,

by taking moments about C for the equilibrium of the

beam,

(P -f 8) (a cos O-h sin ^)
-
(Q + S) (a cos 6 + h sin 6)

-Wksmd = 0,

•• ^^'^^
{PVQ + 2S)h+Wk'

For a given value of P —
Q, the sensibility will be the

greater, the greater tan 6 is, and for a given value of 0,

the sensibility is the greater, the smaller P — Q is, so

tan fi

that we may take p
—

^ as a measure of the sensibility.

Hence the second requisite is best obtained by making

y^—^——^^—j ^j^ very large, i.e. by making a large in

{P+Q+2S)h-\-Wk
^ ^ -^ * *

comparison with h and k.

(3) A good balance should be stable, i.e. it should

readily return to its position of equilibrium, w^hen moved
from it, i.e. its time of oscillation about its position of

equilibrium should be small. It is shewn in works on

Rimd Dvnamics that the time of oscillation is small when
the arm a is small compared with h and k, so that the

conditions of sensibility and stability are at variance one

with another.

In making a balance, however, consideration is paid
to the sort of weighing it is required for. In scientific

measurements, where the greatest accuracy is desired, the

third requisite is sacrificed to obtain the second
;
but for

ordinary commercial purposes, where it is more necessary
to save time than to be very accurate, the reverse is the

case.
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The stability is often measured by the sum of the

moments of the forces which tend to bring back the beam
into its position of equilibrium, but it is obvious that the

time required to do this, and therefore the stability, will

depend on the mass to be moved and on its shape, as well,

151. The Common Steelyard. This is a lever used

as a balance, in which the necessity of keeping a number

YC Yp

Fig.129

of weisfhts is obviated. It consists of a straisjht beam AB,
which is free to turn about a fulcrum C. The weight to

be ascertained is placed in a scale-pan, which hangs from

the end A. A fixed moveable weight slides along the

beam, which is graduated so that the graduation at which
the moveable weight is situate, when the beam rests in

a horizontal position, gives the required weight.

To shew how the graduations are obtained.

Let P be the moveable weight, Q that of the beam
and scale-pan, G the point of the beam through which

Q acts.

Let K be the position of the graduation n, i.e. the

position P occupies when there is a weight nP in the

scale-pan, and the beam balances in a horizontal position.

Taking moments about C, we have

nP.AC-Q.CG-P.GK = 0.

Putting n — 0, in this equation, we get the position of

the zero of the scale, CO = — ^ . CG, or is on the other

side of C to G, and at a distance
-yj

. CG from it.

G. 17
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Hence

or

nP.AC = P.OK,
OK=nAG.

The graduations are obtained then by marking off dis-

tances from 0, equal to AC, 2AC, SAC, &c. By giving
n fractional values we can obtain intermediate graduations.

152. The Danish Bteelyard. This steelyard consists

of a beam AB, terminating in a ball B
;
from the end A

hangs the scale-pan in Avhich the body to be weighed is

placed. The fulcrum C is moved until the weight placed
in the scale-pan is counterbalanced by that of the steelyard.
The beam is graduated so that the position of C, when the

beam balances, gives the corresponding weight in A.

To obtain the graduations.

Let P be the weight of the steelyard and scale-pan,

54 ^'

Fig.130

<£)

W

acting through the point G of the steelyard. It is obvious

that the zero graduation is at G, since the fulcrum must
be at G, when the beam balances without any weight in

the scale-pan.

Let C be the position of the graduation n, i.e. the

point where the fidcrum is when there is a weight nP in

the scale-pan, and the beam balances.

Taking moments about C, we have

nP.AC=P.CG = P{AG- AG),

AGAC=
n + 1
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Hence the graduations are at a distance from A equal to

AG AG AG
3

'

4
&c.

Ex. 1. If the beam of a balance be horizontal, when there are no

weights in the scale-pans, shew that if the balance be a false one, the

actual weight of a body is the geometric mean of its apparent weights

when weighed first in one scale-pan, and then in the other.

Ex. 2. If the arms of a false balance be without weight and one arm

longer than the other by Jth part of the shorter arm, and if in using it

the substance to be weighed is put as often into one scale as the other,

shew that the seller loses I per cent, on his transactions.

Ex. 3. If the bar of the common steelyard be 18 inches long, weigh
8 lbs. and be suspended at a point 3 inches from one extremity, what is

the greatest weight which can be measured by a moveable weight of

2 lbs.? Ans. 16 lbs.

Ex. 4. A common steelyard is 12 inches long, and with the scale-pan

weighs 1 lb., the centre of gravity of the two being 2 inches from the end

to which the scale-pan is attached ;
find the position of the fulcrum when

the moveable weight is 1 lb. and the greatest weight that can be ascer-

tained by means of the steelyard is 12 lbs. Ans. 1 in. from scale-pan.

Ex. 5. The moveable weight of a common steelyard is 6 oz. A
tradesman diminishes its weight by half an ounce: of how much is a

person defrauded who buys what appears to weigh 6 lbs. by this steelyard ?

Ans. ^ oz.

Ex. 6. Find the length of a Danish steelyard, weighing 1 lb., when

the distance between the graduations 4 lbs. and 5 lbs. is 1 inch.

Ans. 30 in.

153. RobervaVs Balance. This consists of four uniform

rods, AB, BD, DC, CA, freely jointed at their extremities

and forming a parallelogram. The rods AB, CD can

turn about pivots at their middle points E, F, which
are fixed in a vertical support. The rods AB, CD are

similar in every respect, as are the rods AC, BD. Equal
scale-pans are rigidly connected with AC and BD.

The peculiar advantage of this balance is that it does

not matter whereabouts the scale-pans the weights to be

compared are placed.

17—2
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Let the weight P, when placed in the scale-pan at-

tached to AG, counterbalance the weight Q placed in

the other scale-pan. If now the system be supposed

displaced by the beams AB, CD turning through a small

angle, it is clear that the centres of mass of AB, CD suffer

no displacement, while that of BD and its scale-pan is

raised or lowered through a vertical distance p, say, and
the centre of mass oi AC and its scale-pan is lowered or

raised through the same distance. The virtual work done

by the weight of BD will be equal to, but of opposite sign
to, that done by the weight of AC. Also the algebraical
sum of the virtual work done by the internal forces of

the system is zero. The equation of virtual work is there-

fore Pp — Qp = 0, since P, Q move through the same
vertical distance as A C, and BD viz. p ;

therefore P= Q.
This result holds wherever P and Q are placed in their

respective scale-pans, i.e. whatever be their distances from
the vertical support.

154. The Differential Wheel and Axle. In order to

raise a very large Aveight by means of a comparatively
small power, with the help of the ordinary 'wheel and

axle', it would be necessary to make either the radius

of the wheel inconveniently large, or else that of the

axle so small that it would be unable to bear the strain

put upon it. This difficulty is got over in the 'Differ-



MACHINES. 261

ential Wheel and Axle'. This consists of two axles

B and C, of different radii, rigidly connected together and

El

h, nT

1^

D

Fig. 132

iw

turning about their common axis AE, which is horizontal

and turns in fixed sockets. The power P is applied at

right angles to the axis, and at the end of an arm AD,
the 'wheel'; the weight W is attached to a pulley sup-

ported by a rope which is wrapped one way round B,
and the other way round C: P and the rope round the

thicker axle B tend to turn the machine in opposite di-

rections.

To find the conditions of equilibrium.

Let a, 6, c be the radii of AD, B, C respectively, and T
the tension of the rope supporting the pulley.

Since the pulley is in equilibrium

2T=W.
Since the machine is in equilibrium, taking moments about
the axis AE, we have

Pa-Th + Tc = 0,

/. Pa = T{h-c) =
^l(b-c\

or P: W=b-c: 2a.
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Hence by making the radii of J5 and G as nearly equal
as we please, the weight which a given power P can raise,

may be increased to any extent.

The principle of work also enables us to obtain this

result very easily.

155. Hunter s Differential Screiv. This consists of a

screw AD which works in a fixed nut C0\ AD is hollow

and has a thread cut inside it, in which a solid screw DE

G

7B

D^

~w
G

Fig.I33

works. DE is prevented from turning round by some

means, for instance, by means of a rod FEE' rigidly con-

nected with it, and whose ends work in smooth grooves,
so that the screw DE can only move in a direction

parallel to its axis.

The weight W is the resistance exerted by any sub-

stance placed between E and the base GG' of the frame-

Avork CGG'C . The ])ower P is applied at the extremity
of the arm AB which is at right angles to and rigidly
connected with the screw AD.

Let a be the length of AB, h, E the distances between
consecutive threads of ^jD, DE respectively.

Let us see the effect of the arm AB making a com-

plete revolution. AD will clearly descend through a



MACHINES. 263

distance li: DE cannot turn with AD, and therefore will

move upwards relatively to J. i) through a space //, i.e. will

actually descend through a space h — K : this is therefore

the distance throuo^h which the wei<?ht is moved.

Let us suppose the virtual displacement made to be
that which would be produced by P moving its point of

application through a small angle 6, so that in consequence
the weicfht descends throug-h a distance x : as the distance

through which DE descends is proportional to the angle
through which AD turns, x/(Ji

-
li)

=
Oj^tt. As P and IF

are the only forces that do work during the above dis-

placement, the equation of virtual work is

P.ae- Wx = 0,

.'. P.27ra=W(h-h').

This relation might have been obtained by an extension

of the method adopted in Art. 146.

It is clear that by making h and hf sufficiently nearly

equal, we can make W/P as great as we please ;
whereas

the same result is obtained in the simple screw only by
making a inconveniently large, or by making h so small that

the thread is too weak to support the pressure on it.

EXAMPLES ON CHAPTER VII.

1. If a power P acting horizontally will support a weight TF on a

plane of inclination a, and would also support it on a plane of inclination

/S, acting parallel to the plane, the pressure on the plane in the former

case being double that in the latter, prove that a = ^ cos~^ (J).

2. If in the first system there be two pulleys, the fixed ends only of

the strings being parallel, and the power horizontal, prove that the

mechanical advantage is \/S.

3. In the first system, the weights of the pulleys beginning with the

highest are in a. p. and a power P supports a weight W; the pulleys are

then reversed, the highest being placed lowest and so on, and now W and

P when interchanged are in equilibrium: shew that n (Jr+P) = 2jr',

where W is the total weight of the pulleys and n is the number of them.
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4. If there be n pulleys in the third system, and if the string which

goes over the lowest have the end at which the power is usually hung,

passed under another moveable pulley, over a fixed pulley, and then

attached to the weight W ;
and if the weight of each pulley be w and no

other power be used, prove that W= (3 . 2"'~i -n-l)w.

5. In a weighing machine constructed on the principle of the

common steelyard the pounds are read off by graduations reaching from

to 14, and the stones by weights hung at the end of the arm ;
if the

weight corresponding to one stone be 7 oz., the moveable weight |lb., and

the length of the arm one foot, prove that the distances between the

graduations are f inches.

6. Shew that, in the third system, if there are n pullies, each of

diameter 2a and weight ta, the distance of the point of suspension of the

weight from the line of action of the power is equal to

2n+i jr+r(w-3)2« + ri + 3]w
73/7 b '-

-*

2(2«-i)jr

7. In the first system of pulleys, shew that, if the weights of the

pulleys are all equal, the equilibrium will not be affected by increasing P,

Wj and the weight of each pulley, by the same amount.

8. A weight W is weighed by a common steelyard, but a weight Q is

substituted for the proper moveable weight P. Shew that the error is

{W-ichJa) {P- Q)IQ, where w is the weight of the steelyard, and h, a

the distances from the fulcrum of the centre of gravity and of the scale-

pan in which w is placed.

9. A false balance, the weight of whose beam may be neglected, has

given weights in the pans, which weights are afterwards interchanged.

In the two positions of equilibrium the beam makes complementary

angles with the vertical. Shew that the line, joining the point of

suspension to the middle point of the beam, makes with the beam twice

the angle, that the beam makes Avith the vertical in one of its positions.

10. The weight of a common steelyard is Q, and the distance of its

fulcrum from the point from which the weight hangs is a, when the

instrument is in perfect adjustment; the fulcrum is displaced to a

distance a + a from this end
;
shew that the correction to be applied to

give the true weight of a body, which iu the imperfect instrument appears

to weigh W, is (Tr +P+ ^) a/ (a + a), P being the moveable weight.

11. If in the first system, P is the power (acting upwards), W the

w^eight, and li the stress on the beam from which the pulleys hang, shew

that R is greater than W (1
-
2-») and less than (2"

-
1) P.
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12. If on a steelyard the moveable weight P which forms the

power be increased in the ratio l^-^- : 1, prove that the consequent error

in W, the weight to be found, is kY, where Y is the weight that must be

removed from W in order to preserve equilibrium when P is moved close

to the fulcrum.

13. Prove that, if in a machine the weight can be supported by the

friction alone, then in raising the weight half the power at least is

wasted in overcoming friction.

Apply this to the dififerential pulley ;
and prove that if the weight can

be supported by friction alone, the radius of the axle must be greater than

the difference of the radii of the pulleys multiplied by the cosecant of the

angle of friction.

14. A single moveable pulley, weight W, is just supported by the

power P, which is applied at one end of a cord which goes under the

pulley and is then fastened to a fixed point: shew that if be the angle

subtended at the centre by the part of the string in contact with the

pulley, it is given by the equation

P (1
- 2€'"^ sin + 6^'^'^)^= W.

15. A true balance is in equilibrium with unequal weights P, Q in its

scales. If a small weight be added to P, the consequent vertical displace-

ment of Q is equal to that which would be the vertical displacement of P,

were the same small weight to be added to Q instead of to P.

16. Prove that in the third system, if the pulleys be small compared

with the lengths of the strings, the necessary correction for the weights

of the strings is the addition to W, Pj, P3,...P„ respectively, of the

weights of lengths /jg + /ig
. . . + /i^ + /i, 2

(/ig
-

^'3),
2 {h^

-
/ij, . . . 2 (h,,

-
/;) of

string: where h^, h^, h^, ... h^ are the heights of the n pulleys (whose

weights are
j?^, p^, ...Pn respectively) above the line of attachment, sup-

posed horizontal, of the strings to the weight W, and h the height of the

point of attachment of the power above the same line.

17. In graduating a steelyard to weigh pounds marks are made with

a file, a weight x being removed for each notch. With the moveable

weight P at the end of the beam ;t lbs. can be weighed after the gradua-

tion is completed, {n+ 1) before it is begun, shew that n (n-rl) = 2Pjx, and

find the error made in weighing m pounds. The c. g. of the steelyard is

originally under the point of suspension.



266 . STATICS.

18. An old Danish steelyard, originally of weight TTlbs. and

accurately graduated, is found coated with rust. In consequence of the

rust, the apparent weights of two known weights of X lbs. and Y lbs. are

found when weighed by the steelyard to be {X
-
x) lbs. , {Y-y) lbs. respec-

tively. Prove that the centre of gravity of the rust divides the graduated

arm in the ratio W {x-y) : Yx - Xy ;
and that its weight is, to a first

approximation, x{W+Y)l(X-Y)+y{W+X)l{Y-X).

19. A brass figure ABDC, of uniform thickness, bounded by a circular

arc BDG (greater than a semicircle) and two tangents AB, AC inclined

at an angle 2a, is used as a letter-weigher as follows. the centre of the

circle is a fixed point, about which the machine can turn freely, and a

weight P is attached to the point A, the weight of the machine itself

being lo. The letter to be weighed is suspended from a clasp (whose

weight may be neglected) at D on the rim of the circle, OD being per-

pendicular to OA. The circle is graduated and is read by a pointer

which hangs vertically from 0: when there is no letter attached, the

point A is vertically below O, and the pointer indicates zero. Obtain a

formula for the graduation of the circle, and shew that if P =^w sin^ a,

the reading of the machine will be
J-
w when OA makes with the vertical

an angle equal to

_i f (tt -1- 2a) sin^ a + 2 sin a cos al
tan "\

—
:

~—
:

—
-.

—
17^
—— y •

[ (7r-l-2a) sin^ a4-2cosa
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1. If a solid cube of finite size be cut by parallel

planes into n slices of equal thickness, we can by sufficiently

increasing n make the volume of each slice smaller than

any assignable volume. The volume of a slice is in this

case said to be ultimately an indefinitely small quantity.

An indefinitely small quantity, then, is one which

though itself less than any assignable quantity, yet when

multiplied by a sufficiently great number amounts to a
finite quantity. It is often said to be ultimately zero, but
it must be understood that it is not absolute zero, which
does not amount to a finite quantity, however great a

quantity it is multiplied by.

Let the above cube be now cut by planes parallel to

another face, so that each slice is divided into n equal

prisms, each having square ends. Again, let the cube be
cut by planes parallel to a third face, so that each prism is

divided into n equal cubes. The total number of cubes is

?i^, of prisms ?r, and of slices n
;
and it requires n prisms

to make a slice, and n^ cubes. It follows then that, when
n is increased indefinitely, a slice, a prism, and a cube be-

come all indefinitelv small, but that thous^h n slices make

up a finite volume, n prisms do not, and though the sum
of n^ prisms is finite, that of if cubes is indefinitely small.

Therefore the ratio of a prism to a slice is indefinitely

small, and also that of a cube to a prism, and a fortiori
that of a cube to a slice. This is usually expressed by
saying that a slice, a prism, and a cube are respectively of

the first, second and third orders of indefinitely small

quantities.

One indefinitely small quantity is of a higher order

than another, when the ratio of the first to the second is

indefinitely small.
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Two quantities are equal when their difference is

indefinitely small compared with either : i.e. two finite

quantities are equal when their difference is an inde-

finitely small quantity, and two indefinitely small quantities
are equal when their difference is a small quantity of

higher order.

When we assert that the algebraical sum of a finite

number of indefinitely small quantities is zero, we are not

stating a truism, but mean that they are so related that

their algebraical sum is of a higher order than that of the

quantities involved.

2. Prop. If two series, consisting of the same number
of indefinitely small quantities of the same order, are such,

that each term of the one bears to the corresponding
term of the other a ratio differing from h (a finite quantity)

by an indefinitely small quantity, the sum of the one series

is h into the sum of the other.

Let a^jCig, ...a„ be the first series, 6^, h^, ...h^ the second,
so that

1 7 9 7 M. 7
7~ ^^ "^ "T"

<^1 ) 7~"
^^

''^ 1 ^2 '
7

^^
"•" ^n '

1 2 n

where
Cj, c^. . x^ are indefinitely small : let c be the greatest

of these quantities.

Then

aj + a2 + ... a^
= h{h^+\-]r .., &J + Vi + V2 + "- ^n^uJ

.*. S {a) —kS (b) is not > c S (6) ;

.'. 2 (a)
= kl (6),

since cS (6) is indefinitely small compared with k S (6).

Cor. Hence two infinite series of indefinitely small

quantities of the first order, such that each term of the one

differs from the corresponding term of the other by a

quantity of the second order, are equal.

This explains why in Arts. 97, 99, 101 and 102 we
have neglected one infinite series and retained another:
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this is done when the first series is of a higher order than

the second.

3. As an illustration of these principles we will give
a proof of Guldin's theorems.

One theorem is, that the volume, generated by the com-

plete revolution of a plane area about any straight line in

its plane and not cutting it, is equal to that of a right

cylinder whose section is the plane area and height the

length of the path described by the centre of mass of the

area.

Draw a number of straight lines at right angles to the

line AB, about which the revolution takes place, dividing
the area >Si into n strips of equal breadth. Let Pp, Qq be

two consecutive lines of this system, typical of the rest,

M, N the points where they meet AB.

Draw PR, pr perpendicular to Qq.

The volume, generated by the revolution of PRrp
about AB, differs from that generated by PQqp by the

volumes generated by the two curvilinear triangles PQB,
pqr.

But when n is increased indefinitely, the breadth only
of the rectangle is diminished indefinitely, whereas both

length and breadth of each triangle is diminished in-

definitely ;
the volumes generated by the latter are there-

fore of a higher order than that generated by the former.

Hence the total volume generated by the area equals
the sum of the volumes generated by the rectangles of

which Pr is a type, i.e.

= 2 {irPM' .MN- irpM^ . MN)
= irt [{PM-pM) (PM + pM) MN]
= irt [Pp .MN {PM+ pM)].

Also the sum of the areas of the rectangles is the area

of the figure 8\ and since they differ by the sum of the

areas of the triangles PQR, pqr, &c., which are of a higher
order than the rectano-les, the centres of mass of the sum
of the rectangles and the figure S must be coincident.
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Therefore x^ the distance of the c. M. of >S' from AB

_ ^{Pp. MN . I (PM+ pM)]

t{Fp. MN)
_ J vol. generated by S

TT X area S
:. volume generated hy S = S . Iirx.

The second theorem is, that the area of the surface,

generated by the revolution of a curve about any straight
line in its plane and not cutting the curve, is equal to the

rectang^le, whose lensfth is the length of the curve and

breadth the distance of the curve's centre of mass from

the straight line.

Let PQ be a side of a polygon, either inscribed within or

circumscribed about the curve : let R be the middle point
of PQ, and therefore its centre of mass. Draw RK perpen-
dicular to the line AB, about which the curve revolves.

As in Art. 99, it can be shewn that the area of the

surface generated by the revolution of PQ about AB '\%

^ttFQ . RK.

Therefore the total surface generated by the revolution

of the polygon about AB
= S (27rPQ . RK)
= 27r2 (PQ . RK)
= 2ttx X perimeter of polygon,

where x is the distance of its centre of mass from AB.

When the lengths of the sides of the inscribed and

circumscribed polygons are diminished indefinitely and

their number increased indefinitely, their perimeters differ

by indefinitely small quantities, and their centres of mass

become coincident. The surfaces generated by each are

therefore equal.

It is assumed as axiomatic, that as the perimeter of the

curve lies in position between the two polygons which

ultimately coincide, it is equal to the perimeter of either
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polygon, its centre of mass coincides with that of either

polygon, and the surface generated by it is equal to that

generated by either polygon.

Hence the surface generated by the curve is equal to

the product of the length of the curve into the length of

the path traced out by its centre of mass.

Each of Guldin's theorems can easily be extended to

the case in which the revolution is not a complete one.

There is no limitation in either as to the number of times,
in which a straight line at right angles to ^i^ cuts the

generating curve.

Ex. Find the volume and surface of an anchor-ring, the figure

generated by the revolution of a circle about a line in its plane, and not

intersecting it.

Alls. Vol. = 27r-a-c, surface= 47r'ac, where a is the radius of the

circle, and c the distance of its centre from the line.

4. To prove that the limit of

F+ 2^ + 3^+... {n-iy _ 1

^' ~p+l
'

where p is any positive quantity, and n is increased in-

definitely.

Let S^ denote 1^ + 2^ + 8" + ... {n
-

ly.

j,p-^ _
(„,
_

ly-^^
=

^p + 1) (^n
_

1)^ + (£±i]i^(,, _l)p-i+ &c.

(n
-

ly^'
-

{n
-

2y^' = [p + 1) {n
-

2)^

.•. by addition

{p+\)p {p + l)p(p-l) ^
3!
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p+i ' ..p+i+
p + 1 (p+1) 7f^' n

£ 1 S^_, p(p-l) 1 ^2,^^

But —
Jj is obviously < -^

-^
—

, i.e. is < 1.

Similarly ^.^^.^
is < 1, if

jt?
is > r.

it

Hence, when p is integral,

P + 1 rf^^ n n^ n^
'"

'nF^'^
'

where A^, A^y A^, &c. are all finite quantities;

•*• ^1 =
^

J
when n is increased indefinitely.

If p be fractional

S
-^ =

ultimately, when ^ is > 7\
it

whenp is<r, ^J ^s<-;

.-. ^-^ is numerically
<l{|^+^^3--iU&c.|;

I.e. < —
-l)7^-|^^^^^

-^

1! J'

i. e. =0 ultimately.

Hence the result holds, whether p is integral or not.^
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